I got stuck at a fairly easy data munging task. I have a transactional data frame in R that resembles this one:
id<-c(11,11,22,22,22)
dates<-as.Date(c('2013-11-15','2013-11-16','2013-11-15','2013-11-16','2013-11-17'), "%Y-%m-%d")
example<-data.frame(id=id,dates=dates)
id dates
1 11 2013-11-15
2 11 2013-11-16
3 22 2013-11-15
4 22 2013-11-16
5 22 2013-11-17
I'm looking for a way to retain the date of the previous transaction. The resulting table would look like this:
previous_dates<-as.Date(c('','2013-11-15','','2013-11-15','2013-11-16'), "%Y-%m-%d")
example2<-data.frame(id=id,dates=dates, previous_dates=previous_dates)
id dates previous_dates
1 11 2013-11-15 <NA>
2 11 2013-11-16 2013-11-15
3 22 2013-11-15 <NA>
4 22 2013-11-16 2013-11-15
5 22 2013-11-17 2013-11-16
I looked into other similar problems and one solution that is very close to what I want is:
library(data.table)
dt <- as.data.table(example)
prev_date <- function(x) c(x[1],x)
dt[,prev:=prev_date(dates), by=id]
The problem with this one is that if there is no previous date (like in the case of id=11 dates=2013-11-15) the function would output the same date resulting in:
id dates previous_dates
1 11 2013-11-15 2013-11-15
2 11 2013-11-16 2013-11-15
Can someone help, please?