I have a pandas series containing zeros and ones:
df1 = pd.Series([ 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0])
df1
Out[3]:
0 0
1 0
2 0
3 0
4 0
5 1
6 1
7 1
8 0
9 0
10 0
I would like to create a dataframe df2 that contains the start and the end of intervals with the same value, together with the value associated... df2 in this case should be...
df2
Out[5]:
Start End Value
0 0 4 0
1 5 7 1
2 8 10 0
My attempt was:
from operator import itemgetter
from itertools import groupby
a=[next(group) for key, group in groupby(enumerate(df1), key=itemgetter(1))]
df2 = pd.DataFrame(a,columns=['Start','Value'])
but I don't know how to get the 'End' indeces
You can groupby
by Series
which is create by cumsum
of shifted Series
df1
by shift
.
Then apply
custum function and last reshape by unstack
.
s = df1.ne(df1.shift()).cumsum()
df2 = df1.groupby(s).apply(lambda x: pd.Series([x.index[0], x.index[-1], x.iat[0]],
index=['Start','End','Value']))
.unstack().reset_index(drop=True)
print (df2)
Start End Value
0 0 4 0
1 5 7 1
2 8 10 0
Another solution with aggregation by agg
with first
and last
, but there is necessary more code for handling output by desired output.
s = df1.ne(df1.shift()).cumsum()
d = {'first':'Start','last':'End'}
df2 = df1.reset_index(name='Value') \
.groupby([s, 'Value'])['index'] \
.agg(['first','last']) \
.reset_index(level=0, drop=True) \
.reset_index() \
.rename(columns=d) \
.reindex_axis(['Start','End','Value'], axis=1)
print (df2)
Start End Value
0 0 4 0
1 5 7 1
2 8 10 0
You could use the pd.Series.diff()
method so as to identify the starting indexes:
df2 = pd.DataFrame()
df2['Start'] = df1[df1.diff().fillna(1) != 0].index
Then compute end indexes from this:
df2['End'] = [e - 1 for e in df2['Start'][1:]] + [df1.index.max()]
And finally gather the associated values :
df2['Value'] = df1[df2['Start']].values
ouput
Start End Value
0 0 4 0
1 5 7 1
2 8 10 0
The thing you are looking for is get first and last values in a groupby
import pandas as pd
def first_last(df):
return df.ix[[0,-1]]
df = pd.DataFrame([3]*4+[4]*4+[1]*4+[3]*3,columns=['value'])
print df
df['block'] = (df.value.shift(1) != df.value).astype(int).cumsum()
df = df.reset_index().groupby(['block','value'])['index'].agg(['first', 'last']).reset_index()
del df['block']
print df
You can groupby using shift and cumsum and find first and last valid index
df2 = df1.groupby((df1 != df1.shift()).cumsum()).apply(lambda x: np.ravel([x.index[0], x.index[-1], x.unique()]))
df2 = pd.DataFrame(df2.values.tolist()).rename(columns = {0: 'Start', 1: 'End',2:'Value'})
You get
Start End Value
0 0 4 0
1 5 7 1
2 8 10 0