可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have a dataframe of which I put one variable into a vector.
From this vector, I would like to calculate for every 5 values mean
, min
and max
value.
I have managed to calculate the means in this way:
means <- colMeans(matrix(df$values, nrow=5))
I know I can calculate the min and max like this:
max <- max(df$values[1:5])
min <- min(df$values[1:5])
How do I repeat this for every five values?
Edit:
Aditionally, how can I get statistic and p-value from a 1-sample t-test for each n-row?
回答1:
You can use sapply
and split
for this:
sapply(split(df$value, rep(1:(nrow(df)/5), each=5)), mean)
sapply(split(df$value, rep(1:(nrow(df)/5), each=5)), min)
sapply(split(df$value, rep(1:(nrow(df)/5), each=5)), max)
If you want the outputs in a matrix you can use what @lmo proposed in the comments:
sapply(split(df$value, rep(1:(nrow(df)/5), each=5)),
function(x) c(mean=mean(x), min=min(x), max=max(x)))
Update
How to get statistic and p-value from a sample t-test for each n-row: This would be a bit harder to implement. Look below;
#mu=3 for sample t-test
t_test_list <- sapply(split(df$value, rep(1:(nrow(df)/5), each=5)), t.test, mu=3)
p_value_list <- lapply(as.data.frame(t_test_list),function(x) x$p.value)
statistic_list <- lapply(as.data.frame(t_test_list),function(x) x$statistic)
p_value_list
and statistic_list
are p.value
and statistic
for each 5 rows.
回答2:
1) tapply Below g
is a grouping variable consisting of fives ones, fives twos and so on. range
provides the minimum and maximum resulting in a list output from tapply
and then simplify2array
reduces that to an array. Omit the simlify2array
if you want a list output. out[1, ]
would be the minima and out[2, ]
would be the maxima.
values <- 1:100 # test input
n <- length(values)
g <- rep(1:n, each = 5, length = n)
out <- simplify2array(tapply(values, g, range))
giving:
> out
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[1,] 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96
[2,] 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
2) aggregate This would also work:
ag <- aggregate(values, list(g = g), range)
giving this data.frame where the first column is g
and the second column is the transpose of the matrix in (1). Here ag[[2]][, 1]
is the minima and ag[[2]][, 2]
is the maxima. If you want to flatten ag
try do.call(data.frame, ag)
or do.call(cbind, ag)
depending on whether you want a 3 column data frame or matrix.
> ag
g x.1 x.2
1 1 1 5
2 2 6 10
3 3 11 15
4 4 16 20
5 5 21 25
6 6 26 30
7 7 31 35
8 8 36 40
9 9 41 45
10 10 46 50
11 11 51 55
12 12 56 60
13 13 61 65
14 14 66 70
15 15 71 75
16 16 76 80
17 17 81 85
18 18 86 90
19 19 91 95
20 20 96 100
回答3:
Certainly an atypical way to do it, and maybe not the most efficient, but you could try zoo::rollapply
. This gives you more info than you need, but you can then filter down to only what you want:
vals <- 1:20
zoo::rollapply(vals, 5, function(x) c(min = min(x), max = max(x), mean = mean(x)))[seq(from = 1, to = length(vals), by = 5),]
min max mean
[1,] 1 5 3
[2,] 6 10 8
[3,] 11 15 13
[4,] 16 20 18
回答4:
For those who love dplyr
and want to preserve the structure of the data, you can use the RcppRoll
package
df <- data.frame(
Time = 1:10,
Value = sample(100:200, 10)
)
> df
Time Value
#1 1 122
#2 2 185
#3 3 138
#4 4 134
#5 5 167
#6 6 197
#7 7 161
#8 8 171
#9 9 152
#10 10 106
Now finding the max
df%>%mutate(
ad = RcppRoll::roll_maxr(Value, 3, fill = "0")
)
Time Value ad
#1 1 122 0
#2 2 185 0
#3 3 138 185
#4 4 134 185
#5 5 167 167
#6 6 197 197
#7 7 161 197
#8 8 171 197
#9 9 152 171
#10 10 106 171