Truncate rows of a pandas DataFrame

2019-07-08 02:27发布

问题:

Code to create sample dataframe:

Sample = [{'account': 'Jones LLC', 'Jan': 150, 'Feb': 200, 'Mar': [[.332, .326], [.058, .138]]},
     {'account': 'Alpha Co',  'Jan': 200, 'Feb': 210, 'Mar': [[.234, .246], [.234, .395], [.013, .592]]},
     {'account': 'Blue Inc',  'Jan': 50,  'Feb': 90,  'Mar': [[.084, .23], [.745, .923], [.925, .843]]}]
df = pd.DataFrame(Sample)

Sample Dataframe visualized:

 df:
  account        Jan      Feb          Mar
Jones LLC  |     150   |   200    | [.332, .326], [.058, .138]
Alpha Co   |     200   |   210    | [[.234, .246], [.234, .395], [.013, .592]]
Blue Inc   |     50    |   90     | [[.084, .23], [.745, .923], [.925, .843]]

I looking for a formula to truncate the 'Mar' column so that any row with shape larger than (2,x) is truncated, resulting in the following df

 df:
  account        Jan      Feb          Mar
Jones LLC  |     150   |   200    | [.332, .326], [.058, .138]
Alpha Co   |     200   |   210    | [[.234, .246], [.234, .395] 
Blue Inc   |     50    |   90     | [[.084, .23], [.745, .923]

回答1:

Operations on a cell level can easily be done using .apply function, combined with lambda operator:

df["Mar"] = df["Mar"].apply(lambda x: x[:2])


回答2:

str accessor is designed for string operations but for iterables like lists, you can use it for slicing too:

df['Mar'] = df['Mar'].str[:2]

df
Out: 
   Feb  Jan                               Mar    account
0  200  150  [[0.332, 0.326], [0.058, 0.138]]  Jones LLC
1  210  200  [[0.234, 0.246], [0.234, 0.395]]   Alpha Co
2   90   50   [[0.084, 0.23], [0.745, 0.923]]   Blue Inc


回答3:

Pandas doesn't play particularly nicely with lists in series, so it might work better to pull this out before working on it:

df['Mar'] = [row[:2] for row in df['Mar'].tolist()]

%timeit results for this and the excellent answers by ayhan and Marjan:

3 rows:

%timeit df['Mar'].str[:2]
10000 loops, best of 3: 154 µs per loop

%timeit df['Mar'].apply(lambda x: x[:2])
10000 loops, best of 3: 133 µs per loop

%timeit [row[:2] for row in df['Mar'].tolist()]
The slowest run took 5.51 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 12 µs per loop

>>>5.51*12
66.12

3,000,000 rows:

%timeit df['Mar'].str[:2]
1 loop, best of 3: 1.23 s per loop

%timeit df['Mar'].apply(lambda x: x[:2])
1 loop, best of 3: 1.25 s per loop

%timeit [row[:2] for row in df['Mar'].tolist()]
1 loop, best of 3: 940 ms per loop

If you're willing to split the lists pairs into two columns, you can get a method that scales a bit better to larger dataframes than the above with

>>>pd.DataFrame(df['Mar'].tolist()).iloc[:, :2]]
                0               1
0  [0.332, 0.326]  [0.058, 0.138]
1  [0.234, 0.246]  [0.234, 0.395]
2   [0.084, 0.23]  [0.745, 0.923]

On 3,000,000 rows:

%timeit pd.DataFrame(df['Mar'].tolist()).iloc[:, :2]
1 loop, best of 3: 276 ms per loop