考虑这个List<string>
List<string> data = new List<string>();
data.Add("Text1");
data.Add("Text2");
data.Add("Text3");
data.Add("Text4");
我的问题是:我怎么能得到列表的子集的每一个组合? 有点像这样:
#Subset Dimension 4
Text1;Text2;Text3;Text4
#Subset Dimension 3
Text1;Text2;Text3;
Text1;Text2;Text4;
Text1;Text3;Text4;
Text2;Text3;Text4;
#Subset Dimension 2
Text1;Text2;
Text1;Text3;
Text1;Text4;
Text2;Text3;
Text2;Text4;
#Subset Dimension 1
Text1;
Text2;
Text3;
Text4;
我想出了一个体面的解决方案,其一个认为值得在这里分享。
我认为,在这个问题的答案需要一些性能测试。 我给它一个去。 这是社会的维基 ,可随时更新。
void PerfTest()
{
var list = Enumerable.Range(0, 21).ToList();
var t1 = GetDurationInMs(list.SubSets_LB);
var t2 = GetDurationInMs(list.SubSets_Jodrell2);
var t3 = GetDurationInMs(() => list.CalcCombinations(20));
Console.WriteLine("{0}\n{1}\n{2}", t1, t2, t3);
}
long GetDurationInMs(Func<IEnumerable<IEnumerable<int>>> fxn)
{
fxn(); //JIT???
var count = 0;
var sw = Stopwatch.StartNew();
foreach (var ss in fxn())
{
count = ss.Sum();
}
return sw.ElapsedMilliseconds;
}
OUTPUT:
1281
1604 (_Jodrell not _Jodrell2)
6817
Jodrell的更新
我内置的发布模式,即上优化。 当我通过Visual Studio的运行我没有得到1或2之间一致的偏见,但经过反复运行LB的答案胜,我得到的答案接近类似,
1190
1260
more
但如果我在命令行中运行测试工具,而不是通过Visual Studio中,我得到的结果更是这样
987
879
still more
类似的逻辑阿巴科的答案,不同的实现....
foreach (var ss in data.SubSets_LB())
{
Console.WriteLine(String.Join("; ",ss));
}
public static class SO_EXTENSIONS
{
public static IEnumerable<IEnumerable<T>> SubSets_LB<T>(
this IEnumerable<T> enumerable)
{
List<T> list = enumerable.ToList();
ulong upper = (ulong)1 << list.Count;
for (ulong i = 0; i < upper; i++)
{
List<T> l = new List<T>(list.Count);
for (int j = 0; j < sizeof(ulong) * 8; j++)
{
if (((ulong)1 << j) >= upper) break;
if (((i >> j) & 1) == 1)
{
l.Add(list[j]);
}
}
yield return l;
}
}
}
编辑
我已经接受了性能战书,接下来是我的合并,是以最好的答案。 在我的测试,它似乎有最好的表现呢。
public static IEnumerable<IEnumerable<T>> SubSets_Jodrell2<T>(
this IEnumerable<T> source)
{
var list = source.ToList();
var limit = (ulong)(1 << list.Count);
for (var i = limit; i > 0; i--)
{
yield return list.SubSet(i);
}
}
private static IEnumerable<T> SubSet<T>(
this IList<T> source, ulong bits)
{
for (var i = 0; i < source.Count; i++)
{
if (((bits >> i) & 1) == 1)
{
yield return source[i];
}
}
}
再次同样的想法,几乎与LB的答案 ,但我自己的解释。
我避免使用内部的List
和Math.Pow
。
public static IEnumerable<IEnumerable<T>> SubSets_Jodrell(
this IEnumerable<T> source)
{
var count = source.Count();
if (count > 64)
{
throw new OverflowException("Not Supported ...");
}
var limit = (ulong)(1 << count) - 2;
for (var i = limit; i > 0; i--)
{
yield return source.SubSet(i);
}
}
private static IEnumerable<T> SubSet<T>(
this IEnumerable<T> source,
ulong bits)
{
var check = (ulong)1;
foreach (var t in source)
{
if ((bits & check) > 0)
{
yield return t;
}
check <<= 1;
}
}
你会注意到,这些方法不会在INTIAL集超过64元的工作,但它开始采取了一会儿,然后进不去。
我开发了一个简单的ExtensionMethod的列表:
/// <summary>
/// Obtain all the combinations of the elements contained in a list
/// </summary>
/// <param name="subsetDimension">Subset Dimension</param>
/// <returns>IEnumerable containing all the differents subsets</returns>
public static IEnumerable<List<T>> CalcCombinations<T>(this List<T> list, int subsetDimension)
{
//First of all we will create a binary matrix. The dimension of a single row
//must be the dimension of list
//on which we are working (we need a 0 or a 1 for every single element) so row
//dimension is to obtain a row-length = list.count we have to
//populate the matrix with the first 2^list.Count binary numbers
int rowDimension = Convert.ToInt32(Math.Pow(2, list.Count));
//Now we start counting! We will fill our matrix with every number from 1
//(0 is meaningless) to rowDimension
//we are creating binary mask, hence the name
List<int[]> combinationMasks = new List<int[]>();
for (int i = 1; i < rowDimension; i++)
{
//I'll grab the binary rapresentation of the number
string binaryString = Convert.ToString(i, 2);
//I'll initialize an array of the apropriate dimension
int[] mask = new int[list.Count];
//Now, we have to convert our string in a array of 0 and 1, so first we
//obtain an array of int then we have to copy it inside our mask
//(which have the appropriate dimension), the Reverse()
//is used because of the behaviour of CopyTo()
binaryString.Select(x => x == '0' ? 0 : 1).Reverse().ToArray().CopyTo(mask, 0);
//Why should we keep masks of a dimension which isn't the one of the subset?
// We have to filter it then!
if (mask.Sum() == subsetDimension) combinationMasks.Add(mask);
}
//And now we apply the matrix to our list
foreach (int[] mask in combinationMasks)
{
List<T> temporaryList = new List<T>(list);
//Executes the cycle in reverse order to avoid index out of bound
for (int iter = mask.Length - 1; iter >= 0; iter--)
{
//Whenever a 0 is found the correspondent item is removed from the list
if (mask[iter] == 0)
temporaryList.RemoveAt(iter);
}
yield return temporaryList;
}
}
}
因此,考虑到问题的例子:
# Row Dimension of 4 (list.Count)
Binary Numbers to 2^4
# Binary Matrix
0 0 0 1 => skip
0 0 1 0 => skip
[...]
0 1 1 1 => added // Text2;Text3;Text4
[...]
1 0 1 1 => added // Text1;Text3;Text4
1 1 0 0 => skip
1 1 0 1 => added // Text1;Text2;Text4
1 1 1 0 => added // Text1;Text2;Text3
1 1 1 1 => skip
希望这可以帮助别人:)
如果您需要澄清或者你想贡献随意添加答案或评论(哪一个更合适)。