I've been working on bilinear interpolation based on wiki example in matlab. I followed the example to the T, but when comparing the outputs from my function and the in-built matlab function, the results are vastly different and I can't figure out why or how that happens.
Using inbuilt matlab function:
Result of my function below:
function T = bilinear(X,h,w)
%pre-allocating the output size
T = uint8(zeros(h,w));
%padding the original image with 0 so i don't go out of bounds
X = padarray(X,[2,2],'both');
%calculating dimension ratios
hr = h/size(X,1);
wr = w/size(X,2);
for row = 3:h-3
for col = 3:w-3
%for calculating equivalent position on the original image
o_row = ceil(row/hr);
o_col = ceil(col/wr);
%getting the intensity values from horizontal neighbors
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
%calculating the relative positions to the enlarged image
y2=round((o_row-1)*hr);
y=round(o_row*hr);
y1=round((o_row+1)*hr);
x1=round((o_col-1)*wr);
x=round(o_col*wr);
x2=round((o_col+1)*wr);
%interpolating on 2 first axis and the result between them
R1=((x2-x)/(x2-x1))*Q11+((x-x1)/(x2-x1))*Q21;
R2=((x2-x)/(x2-x1))*Q12+((x-x1)/(x2-x1))*Q22;
P=round(((y2-y)/(y2-y1))*R1+((y-y1)/(y2-y1))*R2);
T(row,col) = P;
T = uint8(T);
end
end
end
The arguments passed to the function are step4 = bilinear(Igray,1668,1836); (scale factor of 3).
You are finding the pixel nearest to the point you want to interpolate, then find 4 of this pixel’s neighbors and interpolate between them:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row+1,o_col-1);
Q22=X(o_row+1,o_col+1);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col+1);
Instead, find the 4 pixels nearest the point you want to interpolate:
o_row = ceil(row/hr);
o_col = ceil(col/wr);
Q12=X(o_row,o_col-1);
Q22=X(o_row,o_col);
Q11=X(o_row-1,o_col-1);
Q21=X(o_row-1,o_col);
The same pixel’s coordinates then need to be used when computing distances. The easiest way to do that is to separate out the floating-point coordinates of the output pixel ((row,col)
) in the input image (o_row,o_col)
, and the location of the nearest pixel in the input image (fo_row,fo_col)
. Then, the distances are simply d_row = o_row - fo_row
and 1-d_row
, etc.
This is how I would write this function:
function T = bilinear(X,h,w)
% Pre-allocating the output size
T = zeros(h,w,'uint8'); % Create the matrix in the right type, rather than cast !!
% Calculating dimension ratios
hr = h/size(X,1); % Not with the padded sizes!!
wr = w/size(X,2);
% Padding the original image with 0 so I don't go out of bounds
pad = 2;
X = padarray(X,[pad,pad],'both');
% Loop
for col = 1:w % Looping over the row in the inner loop is faster!!
for row = 1:h
% For calculating equivalent position on the original image
o_row = row/hr;
o_col = col/wr;
fo_row = floor(o_row); % Code is simpler when using floor here !!
fo_col = floor(o_col);
% Getting the intensity values from horizontal neighbors
Q11 = double(X(fo_row +pad, fo_col +pad)); % Indexing taking padding into account !!
Q21 = double(X(fo_row+1+pad, fo_col +pad)); % Casting to double might not be necessary, but MATLAB does weird things with integer computation !!
Q12 = double(X(fo_row +pad, fo_col+1+pad));
Q22 = double(X(fo_row+1+pad, fo_col+1+pad));
% Calculating the relative positions to the enlarged image
d_row = o_row - fo_row;
d_col = o_col - fo_col;
% Interpolating on 2 first axis and the result between them
R1 = (1-d_row)*Q11 + d_row*Q21;
R2 = (1-d_row)*Q12 + d_row*Q22;
T(row,col) = round((1-d_col)*R1 + d_col*R2);
end
end
end