可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
Why are people always using enum values like 0, 1, 2, 4, 8
and not 0, 1, 2, 3, 4
?
Has this something to do with bit operations, etc.?
I would really appreciate a small sample snippet on how this is used correctly :)
[Flags]
public enum Permissions
{
None = 0,
Read = 1,
Write = 2,
Delete = 4
}
回答1:
Because they are powers of two and I can do this:
var permissions = Permissions.Read | Permissions.Write;
And perhaps later...
if( (permissions & Permissions.Write) == Permissions.Write )
{
// we have write access
}
It is a bit field, where each set bit corresponds to some permission (or whatever the enumerated value logically corresponds to). If these were defined as 1, 2, 3, ...
you would not be able to use bitwise operators in this fashion and get meaningful results. To delve deeper...
Permissions.Read == 1 == 00000001
Permissions.Write == 2 == 00000010
Permissions.Delete == 4 == 00000100
Notice a pattern here? Now if we take my original example, i.e.,
var permissions = Permissions.Read | Permissions.Write;
Then...
permissions == 00000011
See? Both the Read
and Write
bits are set, and I can check that independently (Also notice that the Delete
bit is not set and therefore this value does not convey permission to delete).
It allows one to store multiple flags in a single field of bits.
回答2:
If it is still not clear from the other answers, think about it like this:
[Flags]
public enum Permissions
{
None = 0,
Read = 1,
Write = 2,
Delete = 4
}
is just a shorter way to write:
public enum Permissions
{
DeleteNoWriteNoReadNo = 0, // None
DeleteNoWriteNoReadYes = 1, // Read
DeleteNoWriteYesReadNo = 2, // Write
DeleteNoWriteYesReadYes = 3, // Read + Write
DeleteYesWriteNoReadNo = 4, // Delete
DeleteYesWriteNoReadYes = 5, // Read + Delete
DeleteYesWriteYesReadNo = 6, // Write + Delete
DeleteYesWriteYesReadYes = 7, // Read + Write + Delete
}
There are eight possibilities but you can represent them as combinations of only four members. If there were sixteen possibilities then you could represent them as combinations of only five members. If there were four billion possibilities then you could represent them as combinations of only 33 members! It is obviously far better to have only 33 members, each (except zero) a power of two, than to try to name four billion items in an enum.
回答3:
Because these values represent unique bit locations in binary:
1 == binary 00000001
2 == binary 00000010
4 == binary 00000100
etc., so
1 | 2 == binary 00000011
EDIT:
3 == binary 00000011
3 in binary is represented by a value of 1 in both the ones place and the twos place. It is actually the same as the value 1 | 2
. So when you are trying to use the binary places as flags to represent some state, 3 isn't usually meaningful (unless there is a logical value that actually is the combination of the two)
For further clarification, you might want to extend your example enum as follows:
[Flags]
public Enum Permissions
{
None = 0, // Binary 0000000
Read = 1, // Binary 0000001
Write = 2, // Binary 0000010
Delete = 4, // Binary 0000100
All = 7, // Binary 0000111
}
Therefore in I have Permissions.All
, I also implicitly have Permissions.Read
, Permissions.Write
, and Permissions.Delete
回答4:
[Flags]
public Enum Permissions
{
None = 0; //0000000
Read = 1; //0000001
Write = 1<<1; //0000010
Delete = 1<<2; //0000100
Blah1 = 1<<3; //0001000
Blah2 = 1<<4; //0010000
}
I think writing like this is easier to understand and read, and you don't need to calculate it.
回答5:
These are used to represent bit flags which allows combinations of enum values. I think it's clearer if you write the values in hex notation
[Flags]
public Enum Permissions
{
None = 0x00,
Read = 0x01,
Write = 0x02,
Delete= 0x04,
Blah1 = 0x08,
Blah2 = 0x10
}
回答6:
This is really more of a comment, but since that wouldn't support formatting, I just wanted to include a method I've employed for setting up flag enumerations:
[Flags]
public enum FlagTest
{
None = 0,
Read = 1,
Write = Read * 2,
Delete = Write * 2,
ReadWrite = Read|Write
}
I find this approach especially helpful during development in the case where you like to maintain your flags in alphabetical order. If you determine you need to add a new flag value, you can just insert it alphabetically and the only value you have to change is the one it now precedes.
Note, however, that once a solution is published to any production system (especially if the enum is exposed without a tight coupling, such as over a web service), then it is highly advisable against changing any existing value within the enum.
回答7:
Lot's of good answers to this one… I'll just say.. if you do not like, or cannot easily grasp what the <<
syntax is trying to express.. I personally prefer an alternative (and dare I say, straightforward enum declaration style)…
typedef NS_OPTIONS(NSUInteger, Align) {
AlignLeft = 00000001,
AlignRight = 00000010,
AlignTop = 00000100,
AlignBottom = 00001000,
AlignTopLeft = 00000101,
AlignTopRight = 00000110,
AlignBottomLeft = 00001001,
AlignBottomRight = 00001010
};
NSLog(@"%ld == %ld", AlignLeft | AlignBottom, AlignBottomLeft);
LOG 513 == 513
So much easier (for myself, at least) to comprehend. Line up the ones… describe the result you desire, get the result you WANT.. No "calculations" necessary.