找到切向量在离散数据点一个点(find tangent vector at a point for

2019-07-03 20:27发布

我有在空间,例如两个点的min的向量:

A = np.array([-1452.18133319  3285.44737438 -7075.49516676])
B = np.array([-1452.20175668  3285.29632734 -7075.49110863])

我想找到载体的切线沿曲线离散点,GG曲线的开始和结束。 我知道如何做到这一点在Matlab,但我想这样做在Python。 这是在Matlab代码:

A = [-1452.18133319  3285.44737438 -7075.49516676];
B = [-1452.20175668  3285.29632734 -7075.49110863];
points = [A; B];
distance = [0.; 0.1667];
pp = interp1(distance, points,'pchip','pp');
[breaks,coefs,l,k,d] = unmkpp(pp);
dpp = mkpp(breaks,repmat(k-1:-1:1,d*l,1).*coefs(:,1:k-1),d);
ntangent=zeros(length(distance),3);
for j=1:length(distance)
    ntangent(j,:) = ppval(dpp, distance(j));
end

%The solution would be at beginning and end:
%ntangent =
%   -0.1225   -0.9061    0.0243
%   -0.1225   -0.9061    0.0243    

有任何想法吗? 我试图找到使用numpy的解决方案,并SciPy的使用多种方法,如

tck, u= scipy.interpolate.splprep(data)

但没有一种方法似乎满足我想要的东西。

Answer 1:

der=1至splev拿到样条曲线的导数:

from scipy import interpolate
import numpy as np
t=np.linspace(0,1,200)
x=np.cos(5*t)
y=np.sin(7*t)
tck, u = interpolate.splprep([x,y])

ti = np.linspace(0, 1, 200)
dxdt, dydt = interpolate.splev(ti,tck,der=1)


Answer 2:

确定,我发现该溶液是上述的“PV”稍加修改(注意splev仅适用于一维向量)我用“TCK,U = scipy.interpolate.splprep(数据)”原本具有的一个问题是,它需要4个点分上班(Matlab的工作连得两分)。 我用的是两分。 增加数据点之后,它的工作原理是我想要的。

下面是完整的解决方案:

import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
data = np.array([[-1452.18133319 , 3285.44737438, -7075.49516676],
                 [-1452.20175668 , 3285.29632734, -7075.49110863],
                 [-1452.32645025 , 3284.37412457, -7075.46633213],
                 [-1452.38226151 , 3283.96135828, -7075.45524248]])

distance=np.array([0., 0.15247556, 1.0834, 1.50007])

data = data.T
tck,u = interpolate.splprep(data, u=distance, s=0)
yderv = interpolate.splev(u,tck,der=1)

和所述切线(其Matlab的结果相匹配,如果使用相同的数据):

(-0.13394599723751408, -0.99063114953803189, 0.026614957159932656)
(-0.13394598523149195, -0.99063115868512985, 0.026614950816003666)
(-0.13394595055068903, -0.99063117647357712, 0.026614941718878599)
(-0.13394595652952143, -0.9906311632471152, 0.026614954146007865)


文章来源: find tangent vector at a point for discrete data points