So I think I sort of understand how fixed thread pools work (using the Executor.fixedThreadPool built into Java), but from what I can see, there's usually a set number of jobs you want done and you know how many to when you start the program. For example
int numWorkers = Integer.parseInt(args[0]);
int threadPoolSize = Integer.parseInt(args[1]);
ExecutorService tpes =
Executors.newFixedThreadPool(threadPoolSize);
WorkerThread[] workers = new WorkerThread[numWorkers];
for (int i = 0; i < numWorkers; i++) {
workers[i] = new WorkerThread(i);
tpes.execute(workers[i]);
}
Where each workerThread does something really simple,that part is arbitrary. What I want to know is, what if you have a fixed pool size (say 8 max) but you don't know how many workers you'll need to finish the task until runtime.
The specific example is: If I have a pool size of 8 and I'm reading from standard input. As I read, I split the input into blocks of a set size. Each one of these blocks is given to a thread (along with some other information) so that they can compress it. As such, I don't know how many threads I'll need to create as I need to keep going until I reach the end of the input. I also have to somehow ensure that the data stays in the same order. If thread 2 finishes before thread 1 and just submits its work, my data will be out of order!
Would a thread pool be the wrong approach in this situation then? It seems like it'd be great (since I can't use more than 8 threads at a time).
Basically, I want to do something like this:
ExecutorService tpes = Executors.newFixedThreadPool(threadPoolSize);
BufferedInputStream inBytes = new BufferedInputStream(System.in);
byte[] buff = new byte[BLOCK_SIZE];
byte[] dict = new byte[DICT_SIZE];
WorkerThread worker;
int bytesRead = 0;
while((bytesRead = inBytes.read(buff)) != -1) {
System.arraycopy(buff, BLOCK_SIZE-DICT_SIZE, dict, 0, DICT_SIZE);
worker = new WorkerThread(buff, dict)
tpes.execute(worker);
}
This is not working code, I know, but I'm just trying to illustrate what I want.
I left out a bit, but see how buff and dict have changing values and that I don't know how long the input is. I don't think I can't actually do this thought because, well worker already exists after the first call! I can't just say worker = new WorkerThread a bunch of time since isn't it already pointing towards an existing thread (true, a thread that might be dead) and obviously in this implemenation if it did work I wouldn't be running in parallel. But my point is, I want to keep creating threads until I hit the max pool size, wait till a thread is done, then keep creating threads until I hit the end of the input.
I also need to keep stuff in order, which is the part that's really annoying.