如何构建BST给后序遍历(How to construct BST given post-order

2019-07-03 12:16发布

我知道有很多方法可以构建从前序遍历树(作为一个数组)。 比较常见的问题是构建它,因为中序和预购遍历。 在这种情况下,尽管序遍历是多余的,它绝对会让事情变得更容易。 任何人都可以给我一个想法如何做到这一点的后序遍历? 重复的和递归的解决方案是必需的。

我试图做到这一点反复进行利用堆栈,但不能在所有获得逻辑正确,所以得到了一个可怕的混乱的树。 同去的递归。

Answer 1:

如果你有从BST的后序遍历数组,你知道这根是数组的最后一个元素。 根的左子占据了阵列的第一部分,和由比所述根较小的条目。 然后如下右子,其由比所述根较大的元件。 (两个孩子可能是空的)。

________________________________
|             |              |R|
--------------------------------
 left child     right child   root

所以,主要的问题是要找到点左子结束,权开始。

两个孩子也从他们的后序遍历获得的,所以构造它们被以同样的方式完成的,递归。

BST fromPostOrder(value[] nodes) {
    // No nodes, no tree
    if (nodes == null) return null;
    return recursiveFromPostOrder(nodes, 0,  nodes.length - 1);
}

// Construct a BST from a segment of the nodes array
// That segment is assumed to be the post-order traversal of some subtree
private BST recursiveFromPostOrder(value[] nodes, 
                                   int leftIndex, int rightIndex) {
    // Empty segment -> empty tree
    if (rightIndex < leftIndex) return null;
    // single node -> single element tree
    if (rightIndex == leftIndex) return new BST(nodes[leftIndex]);

    // It's a post-order traversal, so the root of the tree 
    // is in the last position
    value rootval = nodes[rightIndex];

    // Construct the root node, the left and right subtrees are then 
    // constructed in recursive calls, after finding their extent
    BST root = new BST(rootval);

    // It's supposed to be the post-order traversal of a BST, so
    // * left child comes first
    // * all values in the left child are smaller than the root value
    // * all values in the right child are larger than the root value
    // Hence we find the last index in the range [leftIndex .. rightIndex-1]
    // that holds a value smaller than rootval
    int leftLast = findLastSmaller(nodes, leftIndex, rightIndex-1, rootval);

    // The left child occupies the segment [leftIndex .. leftLast]
    // (may be empty) and that segment is the post-order traversal of it
    root.left = recursiveFromPostOrder(nodes, leftIndex, leftLast);

    // The right child occupies the segment [leftLast+1 .. rightIndex-1]
    // (may be empty) and that segment is the post-order traversal of it
    root.right = recursiveFromPostOrder(nodes, leftLast + 1, rightIndex-1);

    // Both children constructed and linked to the root, done.
    return root;
}

// find the last index of a value smaller than cut in a segment of the array
// using binary search
// supposes that the segment contains the concatenation of the post-order
// traversals of the left and right subtrees of a node with value cut,
// in particular, that the first (possibly empty) part of the segment contains
// only values < cut, and the second (possibly empty) part only values > cut
private int findLastSmaller(value[] nodes, int first, int last, value cut) {

    // If the segment is empty, or the first value is larger than cut,
    // by the assumptions, there is no value smaller than cut in the segment,
    // return the position one before the start of the segment
    if (last < first || nodes[first] > cut) return first - 1;

    int low = first, high = last, mid;

    // binary search for the last index of a value < cut
    // invariants: nodes[low] < cut 
    //             (since cut is the root value and a BST has no dupes)
    // and nodes[high] > cut, or (nodes[high] < cut < nodes[high+1]), or
    // nodes[high] < cut and high == last, the latter two cases mean that
    // high is the last index in the segment holding a value < cut
    while (low < high && nodes[high] > cut) {

        // check the middle of the segment
        // In the case high == low+1 and nodes[low] < cut < nodes[high]
        // we'd make no progress if we chose mid = (low+high)/2, since that
        // would then be mid = low, so we round the index up instead of down
        mid = low + (high-low+1)/2;

        // The choice of mid guarantees low < mid <= high, so whichever
        // case applies, we will either set low to a strictly greater index
        // or high to a strictly smaller one, hence we won't become stuck.
        if (nodes[mid] > cut) {
            // The last index of a value < cut is in the first half
            // of the range under consideration, so reduce the upper
            // limit of that. Since we excluded mid as a possible
            // last index, the upper limit becomes mid-1
            high = mid-1;
        } else {
            // nodes[mid] < cut, so the last index with a value < cut is
            // in the range [mid .. high]
            low = mid;
        }
    }
    // now either low == high or nodes[high] < cut and high is the result
    // in either case by the loop invariants
    return high;
}


Answer 2:

你并不真正需要的序遍历。 有一个简单的方法来重建只给出了后序遍历的树:

  1. 取所述输入阵列中的最后一个元素。 这是根。
  2. 环在剩余的输入阵列寻找其中元素从比所述根小,以成为更大的改变的点。 拆分在该点的输入数组。 这也可以用二进制搜索算法来完成。
  3. 递归重构来自这两个子阵列的子树。

这可以很容易要么递归或迭代完成了一个堆栈,你可以用两个指标来表示当前的子阵列的开始和结束,而不是实际分裂阵列。



Answer 3:

后序遍历是这样的:

visit left
visit right
print current.

而序是这样的:

visit left
print current
visit right

让我们举个例子:

        7
     /     \
    3      10
   / \     / \
  2   5   9   12
             /
            11

序是: 2 3 5 7 9 10 11 12

邮购是: 2 5 3 9 11 12 10 7

迭代以相反的顺序后序阵列和保持分裂周围,其中该值是中序阵列。 递归地做到这一点,那将是你的树。 例如:

current = 7, split inorder at 7: 2 3 5 | 9 10 11 12

看起来熟悉? 什么是左边是左子树,什么是右侧是右子树,以伪随机顺序尽可能的BST结构而言。 但是,你现在知道你的根是什么。 现在做了两半相同。 找到一个元件从左半在后序遍历的第一次出现(从端部)。 这将是3约为3斯普利特:

current = 3, split inorder at 3: 2 | 5 ...

所以,你知道你的树是这个样子至今:

   7
 /
3

这是基于,在后序遍历的值总是会出现在其子女出现后,在序遍历的值将其子值之间出现的事实。



Answer 4:

不要遍历任何东西。 最后一个元素是你的根。 然后取阵列向后遵循BST的插入规则。

eg:-   
given just the postorder -- 2 5 3 9 11 12 10 7



        7
         \
          10

        ----
        7
         \
          10
           \
            12
         -----
        7
         \
          10
           \
            12
           /
          11
         -------
        7
         \
          10
         /  \
        9    12
           /
          11
         --------
        7
      /  \
     3    10
    / \  /  \
   2   5 9  12
           /
          11


文章来源: How to construct BST given post-order traversal