// Find a maximum element in the array.
findMax(A)
findMaxHelper(A, 0, A.length)
findMaxHelper(A, left, right)
if (left == right - 1)
return A[left]
else
max1 = findMaxHelper(A, left, (right + left) / 2)
max2 = findMaxHelper(A, (right + left) / 2, right)
if (max1 > max2)
return max1
else
return max2
我有一个很难理解什么是这个伪代码发生。
有人可以帮助解释什么是在每行发生。 我需要了解此代码之前,我可以回答的问题。
我知道findMax调用辅助函数findMaxHelper的功能,然后findMaxHelper使用递归。 除此之外,我真的不明白。
您正在使用分而治之算法从阵列中找到的最大元素。 第一你将所述阵列分成单独的元件(除),那么你比较元件(征服)。 您将使用调用数组findMaxHelper
递归。
分而治之的总体思路如图所示:
例:
这里max
是与您的findMaxHelper
有两个参数功能,即left
和right
。
检查这为更多的概念的深入理解的例子。
捷豹已经把这个概念很好地和保罗提供了正确的和详细的说明。 要添加到这一点,我想和大家分享一个简单的C代码,给你一个想法的代码如何被执行。 以下是捷豹所使用的相同输入的代码:
#include<stdio.h>
int findMaxHelper(int A[], int left, int right){
int max1,max2;
int static tabcount;
int loop;
for(loop = 0 ; loop <tabcount;loop++) printf("\t");
tabcount++;
printf(" Entering: findMaxHelper(A, left = %d ,right = %d)\n\n",left,right);
if (left == right - 1){
for(loop = 0 ; loop <tabcount;loop++) printf("\t");
printf("\b\b\b\b\b\b\bLeaving: findMaxHelper(A, left = %d ,right = %d)| returning %d\n\n",left,right , A[left]);
tabcount--;
return A[left];
}
else
{
max1 = findMaxHelper(A, left, (right + left) / 2);
max2 = findMaxHelper(A, (right + left) / 2, right);
if (max1 > max2){
for(loop = 0 ; loop <tabcount;loop++) printf("\t");
printf("\b\b\b\b\b\b\bLeaving: findMaxHelper(A, left = %d ,right = %d) | returning max1=%d\n\n",left,right,max1);
tabcount--;
return max1;
}
else {
for(loop = 0 ; loop <tabcount;loop++) printf("\t");
printf("\b\b\b\b\b\b\bLeaving: findMaxHelper(A, left = %d ,right = %d)| returning max2=%d\n\n",left,right,max2);
tabcount--;
return max2;
}
}
}
int main (){
int A[] = { 34,3,47,91,32,0 };
int Ans =findMaxHelper(A,0,7);
printf( "And The Answer Is = %d \n",Ans);
}
U可以复制粘贴乌尔Linux机器上的代码......也许把睡眠(5)每次的printf之后,看看如何递归实际工作...希望这有助于...我也会从我这里系统共享输出!
Entering: findMaxHelper(A, left = 0 ,right = 7)
Entering: findMaxHelper(A, left = 0 ,right = 3)
Entering: findMaxHelper(A, left = 0 ,right = 1)
Leaving: findMaxHelper(A, left = 0 ,right = 1)| returning 34
Entering: findMaxHelper(A, left = 1 ,right = 3)
Entering: findMaxHelper(A, left = 1 ,right = 2)
Leaving: findMaxHelper(A, left = 1 ,right = 2)| returning 3
Entering: findMaxHelper(A, left = 2 ,right = 3)
Leaving: findMaxHelper(A, left = 2 ,right = 3)| returning 47
Leaving: findMaxHelper(A, left = 1 ,right = 3)| returning max2=47
Leaving: findMaxHelper(A, left = 0 ,right = 3)| returning max2=47
Entering: findMaxHelper(A, left = 3 ,right = 7)
Entering: findMaxHelper(A, left = 3 ,right = 5)
Entering: findMaxHelper(A, left = 3 ,right = 4)
Leaving: findMaxHelper(A, left = 3 ,right = 4)| returning 91
Entering: findMaxHelper(A, left = 4 ,right = 5)
Leaving: findMaxHelper(A, left = 4 ,right = 5)| returning 32
Leaving: findMaxHelper(A, left = 3 ,right = 5) | returning max1=91
Entering: findMaxHelper(A, left = 5 ,right = 7)
Entering: findMaxHelper(A, left = 5 ,right = 6)
Leaving: findMaxHelper(A, left = 5 ,right = 6)| returning 0
Entering: findMaxHelper(A, left = 6 ,right = 7)
Leaving: findMaxHelper(A, left = 6 ,right = 7)| returning 0
Leaving: findMaxHelper(A, left = 5 ,right = 7)| returning max2=0
Leaving: findMaxHelper(A, left = 3 ,right = 7) | returning max1=91
Leaving: findMaxHelper(A, left = 0 ,right = 7)| returning max2=91
And The Answer Is = 91
findMaxHelper
划分数组各占一半时间,并找到在左,右的最大:
例如,你有阵列A = [1, 3, 5, 8]
呼叫findMax(A)
- > findMaxHelper(A, 0, A.length)
max1 | max2
1 3 | 5 8
max1|max2 | max1|max2
1 |3 | 5 |8
#include<stdio.h>
#include<stdlib.h>
int high,*a,i=0,n,h;
int max(int *);
int main()
{
printf("Size of array: ");
scanf("%d",&n);
a=(int *)malloc(n*sizeof(int)); //dynamic allocation
for(i=0;i<n;i++)
{
scanf("%d",(a+i));
}
i=0;
high=*a;
h=max(a);
printf("The highest element is %d\n",h);
}
int max(int *a)
{
if(i<n)
{
if(*(a+i)>high)
{high=*(a+i);}
i++;
max(a); //recursive call
}
return high;
}
基本上发现在阵列最大由于不需要故不推荐通过递归。 分治法(递归)有更多的时间成本。 但是,即使如果你想使用它,你可以用我下面的算法。 基本上,它带来阵列的最大元素在第一位置,并有近线性的运行时间(此算法中仅仅是一个递归幻觉虽然!):
int getRecursiveMax(int arr[], int size){
if(size==1){
return arr[0];
}else{
if(arr[0]< arr[size-1]){
arr[0]=arr[size-1];
}
return(getRecursiveMax(arr,size-1));
}
}