I want to use intersection()
by key or filter()
in spark.
But I really don't know how to use intersection()
by key.
So I tried to use filter()
, but it's not worked.
example - here is two RDD:
data1 //RDD[(String, Int)] = Array(("a", 1), ("a", 2), ("b", 2), ("b", 3), ("c", 1))
data2 //RDD[(String, Int)] = Array(("a", 3), ("b", 5))
val data3 = data2.map{_._1}
data1.filter{_._1 == data3}.collect //Array[(String, Int] = Array()
I want to get a (key, value) pair with the same key as data1
based on the key that data2
has.
Array(("a", 1), ("a", 2), ("b", 2), ("b", 3))
is the result I want.
Is there a method to solve this problem using intersection()
by key or filter()
?
This can be achieved in different ways
1. broadcast
variable in filter()
- needs scalability improvement
val data1 = sc.parallelize(Seq(("a", 1), ("a", 2), ("b", 2), ("b", 3), ("c", 1)))
val data2 = sc.parallelize(Seq(("a", 3), ("b", 5)))
// broadcast data2 key list to use in filter method, which runs in executor nodes
val bcast = sc.broadcast(data2.map(_._1).collect())
val result = data1.filter(r => bcast.value.contains(r._1))
println(result.collect().toList)
//Output
List((a,1), (a,2), (b,2), (b,3))
2. cogroup
(similar to group by key)
val data1 = sc.parallelize(Seq(("a", 1), ("a", 2), ("b", 2), ("b", 3), ("c", 1)))
val data2 = sc.parallelize(Seq(("a", 3), ("b", 5)))
val cogroupRdd: RDD[(String, (Iterable[Int], Iterable[Int]))] = data1.cogroup(data2)
/* List(
(a, (CompactBuffer(1, 2), CompactBuffer(3))),
(b, (CompactBuffer(2, 3), CompactBuffer(5))),
(c, (CompactBuffer(1), CompactBuffer()))
) */
//Now filter keys which have two non empty CompactBuffer. You can do that with
//filter(row => row._2._1.nonEmpty && row._2._2.nonEmpty) also.
val filterRdd = cogroupRdd.filter { case (k, (v1, v2)) => v1.nonEmpty && v2.nonEmpty }
/* List(
(a, (CompactBuffer(1, 2), CompactBuffer(3))),
(b, (CompactBuffer(2, 3), CompactBuffer(5)))
) */
//As we care about first data only, lets pick first compact buffer only
// by doing v1.map(val1 => (k, val1))
val result = filterRdd.flatMap { case (k, (v1, v2)) => v1.map(val1 => (k, val1)) }
//List((a, 1), (a, 2), (b, 2), (b, 3))
3. Using inner join
val resultRdd = data1.join(data2).map(r => (r._1, r._2._1)).distinct()
//List((b,2), (b,3), (a,2), (a,1))
Here data1.join(data2)
holds pairs with common keys (inner join)
//List((a,(1,3)), (a,(2,3)), (b,(2,5)), (b,(2,1)), (b,(3,5)), (b,(3,1)))
For your problem, I think cogroup()
is better suited. The intersection()
method will consider both keys and values in your data, and will result in an empty rdd
.
The function cogroup()
groups the values of both rdd
's by key and gives us (key, vals1, vals2)
, where vals1
and vals2
contain the values of data1
and data2
respectively, for each key. Note that if a certain key is not shared in both datasets, one of vals1
or vals2
will be returned as an empty Seq
, hence we'll first have to filter out these tuples to arrive at the intersection of the two rdd
's.
Next, we'll grab vals1
- which contains the values from data1
for the common keys - and convert it to format (key, Array)
. Lastly we use flatMapValues()
to unpack the result into the format of (key, value)
.
val result = (data1.cogroup(data2)
.filter{case (k, (vals1, vals2)) => vals1.nonEmpty && vals2.nonEmpty }
.map{case (k, (vals1, vals2)) => (k, vals1.toArray)}
.flatMapValues(identity[Array[Int]]))
result.collect()
// Array[(String, Int)] = Array((a,1), (a,2), (b,2), (b,3))