说我有这个例子中数据帧
set.seed(12345)
n1 <- 3
n2 <- 10
n3 <- 60
times <- seq(0, 100, 0.5)
individual <- c(rep(1, n1),
rep(2, n2),
rep(3, n3))
events <- c(sort(sample(times, n1)),
sort(sample(times, n2)),
sort(sample(times, n3)))
df <- data.frame(individual = individual, events = events)
这使
> head(df, 10)
individual events
1 1 72.0
2 1 75.5
3 1 87.5
4 2 3.0
5 2 14.5
6 2 16.5
7 2 32.0
8 2 45.5
9 2 50.0
10 2 70.5
我想绘制事件的累积步骤,图表,使我得到每个个体,这是“遭遇”的事件,每次由1变为一行。
因此,例如个别1将是0至72.0,然后上升到1,直到75.5当它成为2和最多3在87.5到图形的端部。
什么是做到这一点的最简单的方法?
df$step <- 1
library(plyr)
df <- ddply(df,.(individual),transform,step=cumsum(step))
plot(step~events,data=df[df$individual==1,],type="s",xlim=c(0,max(df$events)),ylim=c(0,max(df$step)),xlab="time",ylab="step")
lines(step~events,data=df[df$individual==2,],type="s",col=2)
lines(step~events,data=df[df$individual==3,],type="s",col=3)
使用ggplot2
:
library(ggplot2)
# Add step height information with sequence and rle
df$step <- sequence(rle(df$individual)$lengths)
# plot
df$individual <- factor(df$individual)
ggplot(df, aes(x=events, group=individual, colour=individual, y=step)) +
geom_step()
也有stepfun
的统计数据包功能。 利用这一点,你可以使用plot
该对象类方法:
sdf <- split(df, individual)
plot(1, 1, type = "n", xlim = c(0, max(events)), ylim = c(0, max(table(individual))),
ylab = "step", xlab = "time")
sfun <- lapply(sdf, function(x){
sf <- stepfun(sort(x$events), seq_len(nrow(x) + 1) - 1)
plot(sf, add = TRUE, col = unique(x$individual), do.points = FALSE)
})