在精神构建自定义表达式树:齐(无Utree或boost ::变种)(Building a Custo

2019-07-02 13:25发布

首先,如果使用或者升压变体或Utree,然后我会跟他们和解,我会尽量和他们一起解决另一个话题我的问题是容易得多。 但是,我非常希望能够建立一个树一样,我有以下。

背景,忽略,如果你想直来直去的问题:我想是能够建立一个表达式树,它解析像

"({a} == 0) && ({b} > 5)"

或标准数学化表达

"(2 * a) + b"

然后,我将定义哪些a和b之前,我评估我的树,像这样:

a = 10;
double val = myExpression->Evaluate();

我的问题来自当我尝试建立尝试将字符串解析为我的表达式树。 我使用的是抽象类“表达式”,然后得出的“变量”,“常”与“二进制”表达式(它也会做一元,但它不应该影响我的问题。我一直有使用我的规则添加到树问题,所以即时通讯显然做错了什么。有一个很难包装我的头周围的属性林。

我的树如下:(tree.h中):

class BinaryExpression;
typedef double (*func)(double, double);

class Expression
{
public:
    virtual double Evaluate() = 0;
};

class BinaryExpression : public Expression
{
private:
    Expression* lhs;
    Expression* rhs;
    func method;

    double Evaluate();

public:
    BinaryExpression(void);
    BinaryExpression(char op, Expression* lhs, Expression* rhs);
    BinaryExpression(char op);
    void operator()(Expression* lhs, Expression* rhs);
};

class ConstantExpression : public Expression
{
private:
    double value;
public:
    ConstantExpression(void);
    ConstantExpression(char op);
    ConstantExpression(double val);

    double Evaluate();
};

// Require as many types as there are fields in expression?
static double a;
static double b;
class VariableExpression : public Expression
{
private:
    char op;

public:
    VariableExpression(char op);

    double Evaluate();
};

BOOST_FUSION_ADAPT_STRUCT(
    BinaryExpression,
    (Expression*, lhs)
    (Expression*, rhs)
    (func, method)
)

BOOST_FUSION_ADAPT_STRUCT(
    VariableExpression,
    (char, op)
)

BOOST_FUSION_ADAPT_STRUCT(
    ConstantExpression,
    (double, op)
)

Tree.cpp

typedef double (*func)(double, double);

/////////////////////////////////////////////////////////////////////////////
// BINARY EXPRESSION
////////////////////////////////////////////////////////////////////////////

BinaryExpression::BinaryExpression(void) {}

BinaryExpression::BinaryExpression(char op, Expression* lhs, Expression* rhs)
{
    this->lhs = lhs;
    this->rhs = rhs;

    // Example, methods are held in another header
    if (op == '+')
        method = Add;
    else if (op == '-')
        method = Subtract;

}

double BinaryExpression::Evaluate()
{
    return method(lhs->Evaluate(), rhs->Evaluate());
}

BinaryExpression::BinaryExpression(char op)
{
    if (op == '+')
        method = Add;
    else if (op == '-')
        method = Subtract;
}

void BinaryExpression::operator()(Expression* lhs, Expression* rhs)
{
    this->lhs = lhs;
    this->rhs = rhs;
}

/////////////////////////////////////////////////////////////////////////////
// CONSTANT EXPRESSION
////////////////////////////////////////////////////////////////////////////

ConstantExpression::ConstantExpression() {}

ConstantExpression::ConstantExpression(char op)
{
    this->value = op - 48;
}
ConstantExpression::ConstantExpression(double val)
{
    value = val;
}

double ConstantExpression::Evaluate()
{
    return value;
}

/////////////////////////////////////////////////////////////////////////////
// VARIABLE EXPRESSION
////////////////////////////////////////////////////////////////////////////

VariableExpression::VariableExpression(char op)
{
    this->op = op;
}

double VariableExpression::Evaluate()
{
    // a and b are defined in the header, and are used to fill in the variables we     want to evaluate
    if (op == 'a')
        return a;
    if (op == 'b')
        return b;
    return 0;
}

现在,如果我建立树手动这一切工作正常,所以我不认为那里有它的结构方式的问题。

这里是Grammar.h(从这里我尝试过各种事情很多意见,我可以删除它们,但我可能是值得炫耀什么,我已经试过/我想要去用它)

#include "Tree.h"

#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_function.hpp>

namespace qi = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;

qi::_1_type _1;
qi::_2_type _2;

// Pass functions to boost
boost::phoenix::function<BinaryExpression> plus = BinaryExpression('+');
boost::phoenix::function<BinaryExpression> minus = BinaryExpression('-');

template <typename Iterator>
struct ExpressionParser : qi::grammar<Iterator, BinaryExpression(), ascii::space_type>
{
    ExpressionParser() : ExpressionParser::base_type(expression)
    {
        qi::_3_type _3;
        qi::_4_type _4;

        qi::char_type char_;
        qi::uint_type uint_;
        qi::_val_type _val;
        qi::raw_type raw;
        qi::lexeme_type lexeme;
        qi::alpha_type alpha;
        qi::alnum_type alnum;
        qi::bool_type bool_;
        qi::double_type double_;


        expression = //?
            additive_expr                       [_val = _1]
            ;

        //equality_expr = 
        //      relational_expr >> 
        //      *(lit("==") > relational_expr)      [/*Semantice action to add to tree*/]
        //      ;

        additive_expr =
            primary_expr >>
            ( '+' > primary_expr)               [plus(_val, _1)]   
            | ( '-' > primary_expr)             [minus(_val, _1)]
            ;
        // Also tried "_val = plus(_1, _2)"

        primary_expr =
            constant                                [_val = _1]
            | variable                          [_val = _1]
            //| '(' > expression > ')'          [_val = _1]
            ;

        string %=
            '{' >> *(char_ - '}') >> '}'
            ;

        // Returns ConstantExpression
        constant =
            double_                                 [_val = _1];

        // Returns VariableExpression
        variable =
            char_                                   [_val = _1]
            ;
    }

    // constant expression = double
    // variable expression = string
    qi::rule<Iterator, BinaryExpression(), ascii::space_type>
        expression;

    qi::rule<Iterator, BinaryExpression(), ascii::space_type>
        // eventually will deal with all these rules
        equality_expr,
        relational_expr,        
        logical_expr,
        additive_expr,
        multiplicative_expr,
        primary_expr
            ;

    qi::rule<Iterator, ConstantExpression(), ascii::space_type>
        constant
        ;

    qi::rule<Iterator, VariableExpression(), ascii::space_type>
        variable
        ;

    qi::rule<Iterator, std::string(), ascii::space_type>
        string
        ;
};

因此,这是一个真正的黑客分开,但希望它会显示什么即时试图实现。 任何意见或建议将非常感激。 是否有一个地方有人已建成这样的树,而无需使用变体或utree一个例子。

此外抱歉,如果香港专业教育学院破惯例,为我的格式,我试图使它尽可能地易读。

Answer 1:

这是我不清楚你的抱怨与(递归)的变体,但在这里是与你的愿望使用动态分配的节点使用“老土”树建筑随之而来的变化:

  • http://liveworkspace.org/code/3VS77n$0

我有意地回避了运算符优先级的问题,在你的语法,因为

  • 你的语法是不完整
  • 我不知道所需的语义(毕竟,你似乎支持布尔评价为好,但我不知道怎么做)
  • 您可以了解这些在其他的答案:

    • 在C布尔表达式(语法)分析器++
    • 升压::精神表达式解析器
    • 用一个boost ::精神解析器编译错误显示了一个可供选择的方法

注意我如何

  • 通过使用shared_ptr的删除无处不在的内存泄漏(你可以使用Boost之一,如果你没有一个TR1库)
  • 我删除特定的BinaryExpression实例作为凤凰懒演员的误导重用。 相反,我做了一个本地makebinary现在的演员。
  • 注意如何运营商的链(1 + 2 + 5 + 6-10)现在被支持:

     additive_expr = primary_expr [ _val = _1 ] >> *(char_("-+*/") >> primary_expr) [ _val = makebinary(_1, _val, _2)] ; 
  • 我加入{var} /*(expr)支持

  • 用于显示添加了序列化( Print虚拟方法, operator<< )(用于显示方便,BinaryExpression存储operator ,而不是将所得method现在)

  • 因此,现在你可以使用BOOST_SPIRIT_DEBUG(取消注释第一行)
  • 我已经改名为ExpressionAbstractExpression (和去构造保护制)
  • 我已经改名PrimaryExpressionExpression (这是现在你的主要表达的数据类型
  • 我展示了如何简单地变量存储在static地图
    • 一定要看看qi::symbols
    • 例如如何增加气::符号在语法<迭代器,双()>?
  • (仅适用于使用远不及融合结构适应 variable了)
  • 使用模板的构造技巧,使其很容易从不同的解析类型构建表达:

     struct Expression : AbstractExpression { template <typename E> Expression(E const& e) : _e(make_from(e)) { } // cloning the expression // ... }; 

    例如是足以有效地支持:

     primary_expr = ( '(' > expression > ')' ) [ _val = _1 ] | constant [ _val = _1 ] | variable [ _val = _1 ] ; 
  • 为了好玩已包括了几个测试案例:

     Input: 3*8 + 6 Expression: Expression(BinaryExpression(BinaryExpression(ConstantExpression(3) * ConstantExpression(8)) + ConstantExpression(6))) Parse success: true Remaining unparsed: '' (a, b): 0, 0 Evaluation result: 30 ---------------------------------------- Input: 3*(8+6) Expression: Expression(BinaryExpression(ConstantExpression(3) * BinaryExpression(ConstantExpression(8) + ConstantExpression(6)))) Parse success: true Remaining unparsed: '' (a, b): 0, 0 Evaluation result: 42 ---------------------------------------- Input: 0x1b Expression: Expression(ConstantExpression(27)) Parse success: true Remaining unparsed: '' (a, b): 0, 0 Evaluation result: 27 ---------------------------------------- Input: 1/3 Expression: Expression(BinaryExpression(ConstantExpression(1) / ConstantExpression(3))) Parse success: true Remaining unparsed: '' (a, b): 0, 0 Evaluation result: 0.333333 ---------------------------------------- Input: .3333 * 8e12 Expression: Expression(BinaryExpression(ConstantExpression(0.3333) * ConstantExpression(8e+12))) Parse success: true Remaining unparsed: '' (a, b): 0, 0 Evaluation result: 2.6664e+12 ---------------------------------------- Input: (2 * a) + b Expression: Expression(BinaryExpression(BinaryExpression(ConstantExpression(2) * VariableExpression('a')) + VariableExpression('b'))) Parse success: true Remaining unparsed: '' (a, b): 10, 7 Evaluation result: 27 ---------------------------------------- Input: (2 * a) + b Expression: Expression(BinaryExpression(BinaryExpression(ConstantExpression(2) * VariableExpression('a')) + VariableExpression('b'))) Parse success: true Remaining unparsed: '' (a, b): -10, 800 Evaluation result: 780 ---------------------------------------- Input: (2 * {a}) + b Expression: Expression(BinaryExpression(BinaryExpression(ConstantExpression(2) * VariableExpression('a')) + VariableExpression('b'))) Parse success: true Remaining unparsed: '' (a, b): -10, 800 Evaluation result: 780 ---------------------------------------- Input: {names with spaces} Expression: Expression(VariableExpression('names with spaces')) Parse success: true Remaining unparsed: '' (a, b): 0, 0 Evaluation result: 0 ---------------------------------------- 

完整的代码

// #define BOOST_SPIRIT_DEBUG
// #define BOOST_RESULT_OF_USE_DECLTYPE
// #define BOOST_SPIRIT_USE_PHOENIX_V3

#include <cassert>
#include <memory>
#include <iostream>
#include <map>

struct AbstractExpression;
typedef std::shared_ptr<AbstractExpression> Ptr;

struct AbstractExpression {
    virtual ~AbstractExpression() {}
    virtual double Evaluate() const = 0;
    virtual std::ostream& Print(std::ostream& os) const = 0;

    friend std::ostream& operator<<(std::ostream& os, AbstractExpression const& e)
        { return e.Print(os); }

    protected: AbstractExpression() {}
};

template <typename Expr> // general purpose, static Expression cloner
    static Ptr make_from(Expr const& t) { return std::make_shared<Expr>(t); }

struct BinaryExpression : AbstractExpression 
{
    BinaryExpression() {}

    template<typename L, typename R>
    BinaryExpression(char op, L const& l, R const& r) 
        : _op(op), _lhs(make_from(l)), _rhs(make_from(r)) 
    {}

    double Evaluate() const {
        func f = Method(_op);
        assert(f && _lhs && _rhs);
        return f(_lhs->Evaluate(), _rhs->Evaluate());
    }

  private:
    char _op;
    Ptr _lhs, _rhs;

    typedef double(*func)(double, double);

    static double Add(double a, double b)      { return a+b; }
    static double Subtract(double a, double b) { return a-b; }
    static double Multuply(double a, double b) { return a*b; }
    static double Divide(double a, double b)   { return a/b; }

    static BinaryExpression::func Method(char op)
    {
        switch(op) {
            case '+': return Add;
            case '-': return Subtract;
            case '*': return Multuply;
            case '/': return Divide;
            default:  return nullptr;
        }
    }
    std::ostream& Print(std::ostream& os) const
        { return os << "BinaryExpression(" << *_lhs << " " << _op << " " << *_rhs << ")"; }
};

struct ConstantExpression : AbstractExpression {
    double value;
    ConstantExpression(double v = 0) : value(v) {}

    double Evaluate() const { return value; }

    virtual std::ostream& Print(std::ostream& os) const
        { return os << "ConstantExpression(" << value << ")"; }
};

struct VariableExpression : AbstractExpression {
    std::string _name;

    static double& get(std::string const& name) {
        static std::map<std::string, double> _symbols;
        return _symbols[name];
        /*switch(name) {
         *    case 'a': static double a; return a;
         *    case 'b': static double b; return b;
         *    default:  throw "undefined variable";
         *}
         */
    }

    double Evaluate() const { return get(_name); }

    virtual std::ostream& Print(std::ostream& os) const
        { return os << "VariableExpression('" << _name << "')"; }
};

struct Expression : AbstractExpression
{
    Expression() { }

    template <typename E>
    Expression(E const& e) : _e(make_from(e)) { } // cloning the expression

    double Evaluate() const { assert(_e); return _e->Evaluate(); }

    // special purpose overload to avoid unnecessary wrapping
    friend Ptr make_from(Expression const& t) { return t._e; }
  private:
    Ptr _e;
    virtual std::ostream& Print(std::ostream& os) const
        { return os << "Expression(" << *_e << ")"; }
};

//Tree.cpp

/////////////////////////////////////////////////////////////////////////////
// BINARY EXPRESSION
////////////////////////////////////////////////////////////////////////////

//#include "Tree.h"
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/fusion/adapted.hpp>

BOOST_FUSION_ADAPT_STRUCT(VariableExpression, (std::string, _name))

namespace qi    = boost::spirit::qi;
namespace ascii = boost::spirit::ascii;
namespace phx   = boost::phoenix;

// Pass functions to boost
template <typename Iterator>
struct ExpressionParser : qi::grammar<Iterator, Expression(), ascii::space_type> 
{
    struct MakeBinaryExpression {
        template<typename,typename,typename> struct result { typedef BinaryExpression type; };

        template<typename C, typename L, typename R>
            BinaryExpression operator()(C op, L const& lhs, R const& rhs) const 
            { return BinaryExpression(op, lhs, rhs); }
    };

    phx::function<MakeBinaryExpression> makebinary;

    ExpressionParser() : ExpressionParser::base_type(expression) 
    {
        using namespace qi;
        expression =
            additive_expr                        [ _val = _1]
            ;

        additive_expr =
            primary_expr                         [ _val = _1 ]
            >> *(char_("-+*/") >> primary_expr)  [ _val = makebinary(_1, _val, _2)]
            ;

        primary_expr =
              ( '(' > expression > ')' )         [ _val = _1 ]
            | constant                           [ _val = _1 ]
            | variable                           [ _val = _1 ]
            ;

        constant = lexeme ["0x" >> hex] | double_ | int_;
        string   = '{' >> lexeme [ *~char_("}") ] > '}';
        variable = string | as_string [ alpha ];

        BOOST_SPIRIT_DEBUG_NODE(expression);
        BOOST_SPIRIT_DEBUG_NODE(additive_expr);

        BOOST_SPIRIT_DEBUG_NODE(primary_expr);
        BOOST_SPIRIT_DEBUG_NODE(constant);
        BOOST_SPIRIT_DEBUG_NODE(variable);
        BOOST_SPIRIT_DEBUG_NODE(string);
    }

    qi::rule<Iterator, Expression()        , ascii::space_type> expression;
    qi::rule<Iterator, Expression()        , ascii::space_type> additive_expr;

    qi::rule<Iterator, Expression()        , ascii::space_type> primary_expr;
    qi::rule<Iterator, ConstantExpression(), ascii::space_type> constant;
    qi::rule<Iterator, VariableExpression(), ascii::space_type> variable;
    qi::rule<Iterator, std::string()       , ascii::space_type> string;
};

void test(const std::string input, double a=0, double b=0)
{
    typedef std::string::const_iterator It;
    ExpressionParser<It> p;

    Expression e;
    It f(input.begin()), l(input.end());
    bool ok = qi::phrase_parse(f,l,p,ascii::space,e);

    std::cout << "Input:                "  << input            << "\n";
    std::cout << "Expression:           "  << e                << "\n";
    std::cout << "Parse success:        "  << std::boolalpha   << ok << "\n";
    std::cout << "Remaining unparsed:  '"  << std::string(f,l) << "'\n";

    std::cout << "(a, b):               "  << a << ", " << b   << "\n";

    VariableExpression::get("a") = a;
    VariableExpression::get("b") = b;
    std::cout << "Evaluation result:    "  << e.Evaluate()     << "\n";
    std::cout << "----------------------------------------\n";
}

int main() 
{
    test("3*8 + 6"); 
    test("3*(8+6)"); 
    test("0x1b"); 
    test("1/3"); 
    test(".3333 * 8e12");
    test("(2 * a) + b",    10,   7);
    test("(2 * a) + b",   -10, 800);
    test("(2 * {a}) + b", -10, 800);
    test("{names with spaces}");
}


文章来源: Building a Custom Expression Tree in Spirit:Qi (Without Utree or Boost::Variant)