可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I'm trying to get my head around the amazing list processing abilities of python (And eventually numpy). I'm converting some C code I wrote to python.
I have a text datafile where first row is a header, and then every odd row is my input data and every even row is my output data. All data space separated. I'm quite chuffed that I managed to read all the data into lists using nested list comprehensions. amazing stuff.
with open('data.txt', 'r') as f:
# get all lines as a list of strings
lines = list(f)
# convert header row to list of ints and get info
header = map(int, lines[0].split(' '))
num_samples = header[0]
input_dim = header[1]
output_dim = header[2]
del header
# bad ass list comprehensions
inputs = [[float(x) for x in l.split()] for l in lines[1::2]]
outputs = [[float(x) for x in l.split()] for l in lines[2::2]]
del x, l, lines
Then I want to produce a new list where each element is a function of a corresponding input-output pair. I couldn't figure out how to do this with any python specific optimizations. Here it is in C-style python:
# calculate position
pos_list = [];
pos_y = 0
for i in range(num_samples):
pantilt = outputs[i];
target = inputs[i];
if(pantilt[0] > 90):
pantilt[0] -=180
pantilt[1] *= -1
elif pantilt[0] < -90:
pantilt[0] += 180
pantilt[1] *= -1
tan_pan = math.tan(math.radians(pantilt[0]))
tan_tilt = math.tan(math.radians(pantilt[1]))
pos = [0, pos_y, 0]
pos[2] = tan_tilt * (target[1] - pos[1]) / math.sqrt(tan_pan * tan_pan + 1)
pos[0] = pos[2] * tan_pan
pos[0] += target[0]
pos[2] += target[2]
pos_list.append(pos)
del pantilt, target, tan_pan, tan_tilt, pos, pos_y
I tried to do it with a comprehension, or map but couldn't figure out how to:
- draw from two different lists (both input and output) for each element of the pos_list array
- put the body of the algorithm in the comprehension. would it have to be a separate function or is there a funky way of using lambdas for this?
- would it even be possible to do this with no loops at all, just stick it in numpy and vectorize the whole thing?
回答1:
One vectorized approach using boolean-indexing/mask
-
import numpy as np
def mask_vectorized(inputs,outputs,pos_y):
# Create a copy of outputs array for editing purposes
pantilt_2d = outputs[:,:2].copy()
# Get mask correspindig to IF conditional statements in original code
mask_col0_lt = pantilt_2d[:,0]<-90
mask_col0_gt = pantilt_2d[:,0]>90
# Edit the first column as per the statements in original code
pantilt_2d[:,0][mask_col0_gt] -= 180
pantilt_2d[:,0][mask_col0_lt] += 180
# Edit the second column as per the statements in original code
pantilt_2d[ mask_col0_lt | mask_col0_gt,1] *= -1
# Get vectorized tan_pan and tan_tilt
tan_pan_tilt = np.tan(np.radians(pantilt_2d))
# Vectorized calculation for: "tan_tilt * (target[1] .." from original code
V = (tan_pan_tilt[:,1]*(inputs[:,1] - pos_y))/np.sqrt((tan_pan_tilt[:,0]**2)+1)
# Setup output numpy array
pos_array_vectorized = np.empty((num_samples,3))
# Put in values into columns of output array
pos_array_vectorized[:,0] = inputs[:,0] + tan_pan_tilt[:,0]*V
pos_array_vectorized[:,1] = pos_y
pos_array_vectorized[:,2] = inputs[:,2] + V
# Convert to list, if so desired for the final output
# (keeping as numpy array could boost up the performance further)
return pos_array_vectorized.tolist()
Runtime tests
In [415]: # Parameters and setup input arrays
...: num_samples = 1000
...: outputs = np.random.randint(-180,180,(num_samples,5))
...: inputs = np.random.rand(num_samples,6)
...: pos_y = 3.4
...:
In [416]: %timeit original(inputs,outputs,pos_y)
100 loops, best of 3: 2.44 ms per loop
In [417]: %timeit mask_vectorized(inputs,outputs,pos_y)
10000 loops, best of 3: 181 µs per loop
回答2:
Suppose you read your file into a list, like so:
lines = open('data.txt', 'r').readlines()
The header is this:
lines[0]
The even lines are:
even = lines[1:][::2]
and the odd lines are:
odd = lines[2:][::2]
Now you can create a list using itertools.izip
from these two lists:
itertools.izip(even, odd)
This is a sort of list-like thingy (you can loop over it, or just write list( ... )
around it to make it into a true list), whose each entry is a pair of your input-output data.
回答3:
If anyone stumbles upon the same question, here are four variations based on Ami's suggestion (functions do1, do1b, do2, do3)
And for those curious, here are the benchmarks (I have ~1000 input-output pairs of data. Maybe with radically more data the benchmarks would vary more)
- %timeit do3() - 100 loops, best of 3: 2.72 ms per loop
- %timeit do2() - 100 loops, best of 3: 2.73 ms per loop
- %timeit do1b() - 100 loops, best of 3: 2.74 ms per loop
- %timeit do1() - 100 loops, best of 3: 2.67 ms per loop
....
def load_file(filename = 'Sharpy_7.txt'):
global file_data, num_samples, input_dim, output_dim
with open(filename, 'r') as f:
# get all lines as a list of strings
file_data = list(f)
# convert header row to list of ints and get info
header = map(int, file_data[0].split(' '))
num_samples = header[0]
input_dim = header[1]
output_dim = header[2]
f.close()
def calc_pos2(d):
target = d[0]
pantilt = d[1]
if(pantilt[0] > 90):
pantilt[0] -=180
pantilt[1] *= -1
elif pantilt[0] < -90:
pantilt[0] += 180
pantilt[1] *= -1
tan_pan = math.tan(math.radians(pantilt[0]))
tan_tilt = math.tan(math.radians(pantilt[1]))
pos = [0, 0, 0]
pos[2] = tan_tilt * (target[1] - pos[1]) / math.sqrt(tan_pan * tan_pan + 1)
pos[0] = pos[2] * tan_pan
pos[0] += target[0]
pos[2] += target[2]
return pos
def calc_pos(target, pantilt):
if(pantilt[0] > 90):
pantilt[0] -=180
pantilt[1] *= -1
elif pantilt[0] < -90:
pantilt[0] += 180
pantilt[1] *= -1
tan_pan = math.tan(math.radians(pantilt[0]))
tan_tilt = math.tan(math.radians(pantilt[1]))
pos = [0, 0, 0]
pos[2] = tan_tilt * (target[1] - pos[1]) / math.sqrt(tan_pan * tan_pan + 1)
pos[0] = pos[2] * tan_pan
pos[0] += target[0]
pos[2] += target[2]
return pos
def calc_stats():
global pos_array, pos_avg, pos_std
pos_array = np.asarray(pos_list)
pos_avg = np.mean(pos_array, 0)
pos_std = np.std(pos_array, 0)
# map on itertools.izip
def do3():
global pos_list
# bad ass list comprehensions
target_list = [[float(x) for x in l.split()] for l in file_data[1::2]]
pantilt_list = [[float(x) for x in l.split()] for l in file_data[2::2]]
# calculate position
pos_list = map(calc_pos2, itertools.izip(target_list, pantilt_list))
# list comprehension on itertools.izip
def do2():
global pos_list
# bad ass list comprehensions
target_list = [[float(x) for x in l.split()] for l in file_data[1::2]]
pantilt_list = [[float(x) for x in l.split()] for l in file_data[2::2]]
# calculate position
pos_list = [calc_pos(d[0], d[1]) for d in itertools.izip(target_list, pantilt_list)]
# for loop with function call
def do1b():
global pos_list
# bad ass list comprehensions
target_list = [[float(x) for x in l.split()] for l in file_data[1::2]]
pantilt_list = [[float(x) for x in l.split()] for l in file_data[2::2]]
# calculate position
pos_list = [];
for i in range(num_samples):
pos_list.append(calc_pos(target_list[i], pantilt_list[i]))
# for loop with unrolled algorithm
def do1():
global pos_list
# bad ass list comprehensions
target_list = [[float(x) for x in l.split()] for l in file_data[1::2]]
pantilt_list = [[float(x) for x in l.split()] for l in file_data[2::2]]
# calculate position
pos_list = [];
for i in range(num_samples):
pantilt = pantilt_list[i];
target = target_list[i];
if(pantilt[0] > 90):
pantilt[0] -=180
pantilt[1] *= -1
elif pantilt[0] < -90:
pantilt[0] += 180
pantilt[1] *= -1
tan_pan = math.tan(math.radians(pantilt[0]))
tan_tilt = math.tan(math.radians(pantilt[1]))
pos = [0, 0, 0]
pos[2] = tan_tilt * (target[1] - pos[1]) / math.sqrt(tan_pan * tan_pan + 1)
pos[0] = pos[2] * tan_pan
pos[0] += target[0]
pos[2] += target[2]
pos_list.append(pos)