** **破获如何加快一个byte []查找使用sun.misc.Unsafe要快?(**BUSTE

2019-06-27 16:14发布

我与不安全尝试过的值来遍历内存,而不是在迭代一个byte []。 存储器块是使用不安全的分配。 内存足以容纳65536个字节值。

我想这:

char aChar = some character

if ((byte) 0 == (unsafe.getByte(base_address + aChar) & mask)){
 // do something
}

代替:

char aChar = some character

if ((byte) 0 == ( lookup[aChar] & mask )){
 // do something
}

觉得不安全可以访问内存比使用与指数的规则阵列访问检查它为每个索引快...

这只是一厢情愿的JVM将有一个特殊的OP(不安全的),这将在某种程度上进行定期阵列访问和迭代的速度更快。 JVM中,在我看来,正常工作与正常的byte []迭代和做他们,快,可以使用正常的,纯粹的,香草Java代码。

@millimoose打谚语“的头钉”

“不安全可能是很多有用的东西,但这个级别microoptimisation是不是其中之一- millimoose”

使用不安全是非常严格的一套有限的情况下,速度快:

  • (仅64位JVM)用于单个65535字节[]查找更快每个测试完成一次 。 在上64_bit JVM这种情况下UnsafeLookup_8B是24%的速度。 如果测试重复自身,使得每个测试完成两次,通常的方法是现在比不安全快30%。 在上一个冷JVM解释纯模式中,不安全的是迄今为止更快---但只在第一次和仅对于小阵列尺寸。 在32位的标准Oracle JVM 7.x中,正常的是比使用不安全的快三倍。

使用不安全的(在我的测试)是比较慢:

  • 慢于两个Oracle的java 64位和32位虚拟机
  • 慢无论OS和机器结构(32位和64位)的
  • 更慢,如果server JVM选项调用

  • 不安全的为9%或更多(1_GB阵列和UnsafeLookup_8B(最快的一个)在下面的代码在32位JVM(64位是更慢?))慢

  • 不安全的是在下面的代码在64位JVM从234%较慢或多个(1_MB阵列和UnsafeLookup_1B(最快的一个)。

是有一些道理呢?**

当我运行yellowB下面发布的代码(检查一个1GB字节[]),正常是还仍然是最快的:

C:\Users\wilf>java -Xms1600m -Xprof -jar "S:\wilf\testing\dist\testing.jar"
initialize data...
initialize data done!

use normalLookup()...
Not found '0'
time : 1967737 us.

use unsafeLookup_1B()...
Not found '0'
time : 2923367 us.

use unsafeLookup_8B()...
Not found '0'
time : 2495663 us.

Flat profile of 26.35 secs (2018 total ticks): main

  Interpreted + native   Method
  0.0%     1  +     0    test.StackOverflow.main
  0.0%     1  +     0    Total interpreted

     Compiled + native   Method
 67.8%  1369  +     0    test.StackOverflow.main
 11.7%   236  +     0    test.StackOverflow.unsafeLookup_8B
 11.2%   227  +     0    test.StackOverflow.unsafeLookup_1B
  9.1%   184  +     0    test.StackOverflow.normalLookup
 99.9%  2016  +     0    Total compiled

         Stub + native   Method
  0.0%     0  +     1    sun.misc.Unsafe.getLong
  0.0%     0  +     1    Total stub


Flat profile of 0.00 secs (1 total ticks): DestroyJavaVM

  Thread-local ticks:
100.0%     1             Blocked (of total)


Global summary of 26.39 seconds:
100.0%  2023             Received ticks


C:\Users\wilf>java -version
java version "1.7.0_07"
Java(TM) SE Runtime Environment (build 1.7.0_07-b11)
Java HotSpot(TM) Client VM (build 23.3-b01, mixed mode, sharing)

CPU是:英特尔Core 2 Duo E4600 @ 2.4GHZ 4.00GB(3.25GB可用)操作系统:Windows 7(32)

运行在与Windows 7_64,32位Java的4核AMD64测试:

initialize data...
initialize data done!

use normalLookup()...
Not found '0'
time : 1631142 us.

use unsafeLookup_1B()...
Not found '0'
time : 2365214 us.

use unsafeLookup_8B()...
Not found '0'
time : 1783320 us.

运行在与Windows 7_64,64位Java的4核AMD64测试:

use normalLookup()...
Not found '0'
time : 655146 us.

use unsafeLookup_1B()...
Not found '0'
time : 904783 us.

use unsafeLookup_8B()...
Not found '0'
time : 764427 us.

Flat profile of 6.34 secs (13 total ticks): main

  Interpreted + native   Method
 23.1%     3  +     0    java.io.PrintStream.println
 23.1%     3  +     0    test.StackOverflow.unsafeLookup_8B
 15.4%     2  +     0    test.StackOverflow.main
  7.7%     1  +     0    java.io.DataInputStream.<init>
 69.2%     9  +     0    Total interpreted

     Compiled + native   Method
  7.7%     0  +     1    test.StackOverflow.unsafeLookup_1B
  7.7%     0  +     1    test.StackOverflow.main
  7.7%     0  +     1    test.StackOverflow.normalLookup
  7.7%     0  +     1    test.StackOverflow.unsafeLookup_8B
 30.8%     0  +     4    Total compiled


Flat profile of 0.00 secs (1 total ticks): DestroyJavaVM

  Thread-local ticks:
100.0%     1             Blocked (of total)


Global summary of 6.35 seconds:
100.0%    14             Received ticks
 42.9%     6             Compilation

Answer 1:

我想你张贴的两个功能基本上是相同的,因为他们只读1个字节,然后将其转换为int,做futher比较。

读4字节int或每次8字节长是effective.I写了两个函数做同样的事情,更:比较两个字节[]的内容,看看他们是相同的:

功能1:

public static boolean hadoopEquals(byte[] b1, byte[] b2)
  {
    if(b1 == b2)
    {
      return true;
    }
    if(b1.length != b2.length)
    {
      return false;
    }
    // Bring WritableComparator code local

    for(int i = 0;i < b1.length; ++i)
    {
     int a = (b1[i] & 0xff);
     int b = (b2[i] & 0xff);
     if (a != b) 
     {
       return false;
     }
    }
    return true;
  }

功能2:

public static boolean goodEquals(byte[] b1,byte[] b2)
  {   
    if(b1 == b2)
    {
      return true;
    }
    if(b1.length != b2.length)
    {
      return false;
    }
    int baseOffset = UnSafe.arrayBaseOffset(byte[].class);

    int numLongs = (int)Math.ceil(b1.length / 8.0);

    for(int i = 0;i < numLongs; ++i)
    {
      long currentOffset = baseOffset + (i * 8);
      long l1 = UnSafe.getLong(b1, currentOffset);
      long l2 = UnSafe.getLong(b2, currentOffset);
      if(0L != (l1 ^ l2))
      {
        return false;
      }
    }
    return true;    
  }

我跑我的笔记本电脑这两个功能(corei7 2630QM,8GB DDR3,64位赢得7位,64位热点JVM),并比较两个400MB的byte [],结果是下面:

功能1:〜670ms

功能2:〜80毫秒

2得多快。

所以我的建议是每次读取8个字节,并使用XOR运算符(^):

long l1 = UnSafe.getLong(byteArray, offset);  //8 byte
if(0L == l1 ^ 0xFF)  //if the lowest byte == 0?
/* do something */
if(0L == l1 ^ 0xFF00)  //if the 2nd lowest byte == 0?
/* do something */
/* go on... */

================================================== ==========================

嗨维尔夫,我用你的代码进行测试类,如下,这个类中的字节数组查找一号0的比较中3种功能的速度:

package test;

import java.lang.reflect.Field;

import sun.misc.Unsafe;

/**
 * Test the speed in looking up the 1st 0 in a byte array
 * Set -Xms the same as -Xms to avoid Heap reallocation
 * 
 * @author yellowb
 *
 */
public class StackOverflow
{
    public static Unsafe UnSafe;

    public static Unsafe getUnsafe() throws SecurityException,
            NoSuchFieldException, IllegalArgumentException,
            IllegalAccessException
    {
        Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");
        theUnsafe.setAccessible(true);
        Unsafe unsafe = (Unsafe) theUnsafe.get(null);
        return unsafe;
    }

    /**
     * use 'byte[index]' form to read 1 byte every time
     * @param buf
     */
    public static void normalLookup(byte[] buf)
    {
        for (int i = 0; i < buf.length; ++i)
        {
            if ((byte) 0 == buf[i])
            {
                System.out.println("The 1st '0' is at position : " + i);
                return;
            }
        }
        System.out.println("Not found '0'");
    }

    /**
     * use Unsafe.getByte to read 1 byte every time directly from the memory
     * @param buf
     */
    public static void unsafeLookup_1B(byte[] buf)
    {
        int baseOffset = UnSafe.arrayBaseOffset(byte[].class);
        for (int i = 0; i < buf.length; ++i)
        {
            byte b = UnSafe.getByte(buf, (long) (baseOffset + i));
            if (0 == ((int) b & 0xFF))
            {
                System.out.println("The 1st '0' is at position : " + i);
                return;
            }

        }
        System.out.println("Not found '0'");
    }

    /**
     * use Unsafe.getLong to read 8 byte every time directly from the memory
     * @param buf
     */
    public static void unsafeLookup_8B(byte[] buf)
    {
        int baseOffset = UnSafe.arrayBaseOffset(byte[].class);

        //The first (numLongs * 8) bytes will be read by Unsafe.getLong in below loop
        int numLongs = buf.length / 8;
        long currentOffset = 0L;
        for (int i = 0; i < numLongs; ++i)
        {
            currentOffset = baseOffset + (i * 8);  //the step is 8 bytes
            long l = UnSafe.getLong(buf, currentOffset);
            //Compare each byte(in the 8-Byte long) to 0
            //PS:x86 cpu is little-endian mode
            if (0L == (l & 0xFF))
            {
                System.out.println("The 1st '0' is at position : " + (i * 8));
                return;
            }
            if (0L == (l & 0xFF00L))
            {
                System.out.println("The 1st '0' is at position : " + (i * 8 + 1));
                return;
            }
            if (0L == (l & 0xFF0000L))
            {
                System.out.println("The 1st '0' is at position : " + (i * 8 + 2));
                return;
            }
            if (0L == (l & 0xFF000000L))
            {
                System.out.println("The 1st '0' is at position : " + (i * 8 + 3));
                return;
            }
            if (0L == (l & 0xFF00000000L))
            {
                System.out.println("The 1st '0' is at position : " + (i * 8 + 4));
                return;
            }
            if (0L == (l & 0xFF0000000000L))
            {
                System.out.println("The 1st '0' is at position : " + (i * 8 + 5));
                return;
            }
            if (0L == (l & 0xFF000000000000L))
            {
                System.out.println("The 1st '0' is at position : " + (i * 8 + 6));
                return;
            }
            if (0L == (l & 0xFF00000000000000L))
            {
                System.out.println("The 1st '0' is at position : " + (i * 8 + 7));
                return;
            }
        }

        //If some rest bytes exists
        int rest = buf.length % 8;
        if(0 != rest)
        {
            currentOffset = currentOffset + 8;
            //Because the length of rest bytes < 8,we have to read them one by one
            for(; currentOffset < (baseOffset + buf.length); ++currentOffset)
            {
                byte b = UnSafe.getByte(buf, (long)currentOffset);
                if (0 == ((int) b & 0xFF))
                {
                    System.out.println("The 1st '0' is at position : " + (currentOffset - baseOffset));
                    return;
                }
            }
        }
        System.out.println("Not found '0'");
    }

    public static void main(String[] args) throws SecurityException,
            NoSuchFieldException, IllegalArgumentException,
            IllegalAccessException
    {
        UnSafe = getUnsafe();

        int len = 1024 * 1024 * 1024;  //1G
        long startTime = 0L;
        long endTime = 0L;

        System.out.println("initialize data...");
        byte[] byteArray1 = new byte[len];
        for (int i = 0; i < len; ++i)
        {
            byteArray1[i] = (byte) (i % 128 + 1);  //No byte will equal to 0
        }
        //If you want to set one byte to 0,uncomment the below statement
//      byteArray1[2500] = (byte)0;
        System.out.println("initialize data done!");

        System.out.println("use normalLookup()...");
        startTime = System.nanoTime();
        normalLookup(byteArray1);
        endTime = System.nanoTime();
        System.out.println("time : " + ((endTime - startTime) / 1000) + " us.");

        System.out.println("use unsafeLookup_1B()...");
        startTime = System.nanoTime();
        unsafeLookup_1B(byteArray1);
        endTime = System.nanoTime();
        System.out.println("time : " + ((endTime - startTime) / 1000) + " us.");

        System.out.println("use unsafeLookup_8B()...");
        startTime = System.nanoTime();
        unsafeLookup_8B(byteArray1);
        endTime = System.nanoTime();
        System.out.println("time : " + ((endTime - startTime) / 1000) + " us.");
    }
}

而输出是:

initialize data...
initialize data done!
use normalLookup()...
Not found '0'
time : 1271781 us.
use unsafeLookup_1B()...
Not found '0'
time : 716898 us.
use unsafeLookup_8B()...
Not found '0'
time : 591689 us.

结果表明,即使通过Unsafe.getByte每次()读取1个字节大于迭代[] regularly.And读取8个字节长的字节是最快的速度要快得多。



Answer 2:

我觉得不安全可以访问内存比使用与指数的规则阵列访问检查它为每个索引快...

一个可能的原因范围检查可能不是一个因素是JIT编译器的优化。 由于数组的大小永远不会改变,有可能对优化器“葫芦”的所有范围检查,并在循环的开始执行一次吧。

相比之下,JIT编译器可能无法优化(如内联)的Unsafe.getByte()调用。 或者,也许getByte方法有一个读屏障...)

然而,这是炒作。 可以肯定的方式是让JVM倾倒了两个案件的JIT编译的本地代码,并通过指令对它们进行比较的指令。



Answer 3:

不安全的方法可以被标记为母语,但并不意味着他们是一定JNI。 几乎所有的不安全的方法是内部函数(见短的帖子在这里: http://psy-lob-saw.blogspot.co.uk/2012/10/java-intrinsics-are-not-jni-calls.html )为太阳JVM它们将被转换为单一的汇编指令(在许多情况下),对于其他JVM,他们可能会或可能不会在处理内部函数的好,可以把它们转换成JNI调用或纯Java调用。 从我知道的JRockit是倾向于去JNI的方式,所以不会在Android JVM。



文章来源: **BUSTED** How to speed up a byte[] lookup to be faster using sun.misc.Unsafe?