How to do a self join in Spark 2.3.0? What is the

2019-06-27 09:57发布

问题:

I have the following code

import org.apache.spark.sql.streaming.Trigger 

val jdf = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("subscribe", "join_test").option("startingOffsets", "earliest").load();   
jdf.createOrReplaceTempView("table")
val resultdf = spark.sql("select * from table as x inner join table as y on x.offset=y.offset")
resultdf.writeStream.outputMode("append").format("console").option("truncate", false).trigger(Trigger.ProcessingTime(1000)).start()

and I get the following exception

org.apache.spark.sql.AnalysisException: cannot resolve '`x.offset`' given input columns: [x.value, x.offset, x.key, x.timestampType, x.topic, x.timestamp, x.partition]; line 1 pos 50;
'Project [*]
+- 'Join Inner, ('x.offset = 'y.offset)
   :- SubqueryAlias x
   :  +- SubqueryAlias table
   :     +- StreamingRelation DataSource(org.apache.spark.sql.SparkSession@15f3f9cf,kafka,List(),None,List(),None,Map(startingOffsets -> earliest, subscribe -> join_test, kafka.bootstrap.servers -> localhost:9092),None), kafka, [key#28, value#29, topic#30, partition#31, offset#32L, timestamp#33, timestampType#34]
   +- SubqueryAlias y
      +- SubqueryAlias table
         +- StreamingRelation DataSource(org.apache.spark.sql.SparkSession@15f3f9cf,kafka,List(),None,List(),None,Map(startingOffsets -> earliest, subscribe -> join_test, kafka.bootstrap.servers -> localhost:9092),None), kafka, [key#28, value#29, topic#30, partition#31, offset#32L, timestamp#33, timestampType#34]

I have changed the code to this

import org.apache.spark.sql.streaming.Trigger 

val jdf = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("subscribe", "join_test").option("startingOffsets", "earliest").load();
val jdf1 = spark.readStream.format("kafka").option("kafka.bootstrap.servers", "localhost:9092").option("subscribe", "join_test").option("startingOffsets", "earliest").load();

jdf.createOrReplaceTempView("table")
jdf1.createOrReplaceTempView("table1")

val resultdf = spark.sql("select * from table inner join table1 on table.offset=table1.offset")

resultdf.writeStream.outputMode("append").format("console").option("truncate", false).trigger(Trigger.ProcessingTime(1000)).start()

And this works. However, I don't believe it is the solution I am looking for. I want to be able to do a self join using raw SQL but not by making additional copies of a dataframe like the code above. so is there any other way?

回答1:

This is a known issue and will be fixed in 2.4.0. See https://issues.apache.org/jira/browse/SPARK-23406. Right now you can just avoid to join the same DataFrame objects.



回答2:

You could use the DataFrame API join function instead of using SQL syntax:

jdf.as("df1").join(jdf.as("df2"), $"df1.offset" === $"df2.offset", "inner")