我在R A非常的大数据帧,并想总结两列的其他列中的每个不同的值,例如说我们有过了一天在各种商店交易的数据帧的数据如下
shop <- data.frame('shop_id' = c(1, 1, 1, 2, 3, 3),
'shop_name' = c('Shop A', 'Shop A', 'Shop A', 'Shop B', 'Shop C', 'Shop C'),
'city' = c('London', 'London', 'London', 'Cardiff', 'Dublin', 'Dublin'),
'sale' = c(12, 5, 9, 15, 10, 18),
'profit' = c(3, 1, 3, 6, 5, 9))
这就是:
shop_id shop_name city sale profit
1 Shop A London 12 3
1 Shop A London 5 1
1 Shop A London 9 3
2 Shop B Cardiff 15 6
3 Shop C Dublin 10 5
3 Shop C Dublin 18 9
而且我要总结的销售和利润各店给:
shop_id shop_name city sale profit
1 Shop A London 26 7
2 Shop B Cardiff 15 6
3 Shop C Dublin 28 14
我目前使用下面的代码来做到这一点:
shop_day <-ddply(shop, "shop_id", transform, sale=sum(sale), profit=sum(profit))
shop_day <- subset(shop_day, !duplicated(shop_id))
该工作绝对没问题,但我说我的数据框大(140,000行,37列和近10万的唯一行,我想总结)和我的代码需要年龄运行,然后最后说,他们已经耗尽内存。
有谁知道的最有效的方式来做到这一点。
提前致谢!
**强制性数据表的答案**
> library(data.table)
data.table 1.8.0 For help type: help("data.table")
> shop.dt <- data.table(shop)
> shop.dt[,list(sale=sum(sale), profit=sum(profit)), by='shop_id']
shop_id sale profit
[1,] 1 26 7
[2,] 2 15 6
[3,] 3 28 14
>
其中直到事情得到更大听起来不错,和良好的...
shop <- data.frame(shop_id = letters[1:10], profit=rnorm(1e7), sale=rnorm(1e7))
shop.dt <- data.table(shop)
> system.time(ddply(shop, .(shop_id), summarise, sale=sum(sale), profit=sum(profit)))
user system elapsed
4.156 1.324 5.514
> system.time(shop.dt[,list(sale=sum(sale), profit=sum(profit)), by='shop_id'])
user system elapsed
0.728 0.108 0.840
>
如果你创建一个关键的data.table你获得额外的速度增加:
shop.dt <- data.table(shop, key='shop_id')
> system.time(shop.dt[,list(sale=sum(sale), profit=sum(profit)), by='shop_id'])
user system elapsed
0.252 0.084 0.336
>
以下是如何使用基础R加快这样的操作:
idx <- split(1:nrow(shop), shop$shop_id)
a2 <- data.frame(shop_id=sapply(idx, function(i) shop$shop_id[i[1]]),
sale=sapply(idx, function(i) sum(shop$sale[i])),
profit=sapply(idx, function(i) sum(shop$profit[i])) )
时间缩短到0.75秒VS 5.70秒,我的系统上ddply总结版本。
我认为这样做最巧妙的方法是在dplyr
library(dplyr)
shop %>%
group_by(shop_id, shop_name, city) %>%
summarise_all(sum)
为了以防万一,如果你有列一长串,使用summarize_if()
总结所有列,如果数据类型为int
library(dplyr)
shop %>%
group_by(shop_id, shop_name, city) %>%
summarise_if(is.integer, sum)