这个问题在这里问过
什么是一个很好的策略将类似的话吗?
但没有明确的答案是如何“组”项目给出。 基于difflib的解决方案基本上是搜索,对于给定的项目,difflib可以返回最相似的词了一个名单。 不过,这可怎么用于分组?
我想,以减少
['ape', 'appel', 'apple', 'peach', 'puppy']
至
['ape', 'appel', 'peach', 'puppy']
要么
['ape', 'apple', 'peach', 'puppy']
我想一个想法是,为每个项目,遍历列表,如果get_close_matches返回多个匹配,使用它,如果不能保持的话原样。 这部分的工作,但它同时也意味着苹果为APPEL,然后APPEL对于苹果来说,这些话只会开关的地方,没有什么会改变。
我将不胜感激任何指针,图书馆等的名字
注:另外在性能方面,我们有30万项的列表,并get_close_matches似乎有点慢。 有谁知道基于C / + +解决方案在那里呢?
谢谢,
注:进一步的调查显示kmedoid是正确的算法(以及层次聚类),因为kmedoid不需要“中心”,它需要/使用数据点自己为中心的(这些点称为中心点划分,故名)。 在字分组的情况下,medoid将是该组/群集的代表性元素。
Answer 1:
您需要标准化团体。 在每个组中,选择一个字或编码代表该组。 然后,组词由他们的代表。
一些可能的方式:
- 选择第一个遇到的单词。
- 挑选字典第一个字。
- 推导所有单词的模式。
- 选择一个唯一索引。
- 使用同音的模式。
分组的话可能是困难的,但。 如果A是类似于B,且B是类似于C,A和C是不一定彼此相似。 如果B是代表,A和C二者可以被包括在组中。 但是,如果A或C为代表,其他的不能被包括在内。
去第一选择(第一次遇到字):
class Seeder:
def __init__(self):
self.seeds = set()
self.cache = dict()
def get_seed(self, word):
LIMIT = 2
seed = self.cache.get(word,None)
if seed is not None:
return seed
for seed in self.seeds:
if self.distance(seed, word) <= LIMIT:
self.cache[word] = seed
return seed
self.seeds.add(word)
self.cache[word] = word
return word
def distance(self, s1, s2):
l1 = len(s1)
l2 = len(s2)
matrix = [range(zz,zz + l1 + 1) for zz in xrange(l2 + 1)]
for zz in xrange(0,l2):
for sz in xrange(0,l1):
if s1[sz] == s2[zz]:
matrix[zz+1][sz+1] = min(matrix[zz+1][sz] + 1, matrix[zz][sz+1] + 1, matrix[zz][sz])
else:
matrix[zz+1][sz+1] = min(matrix[zz+1][sz] + 1, matrix[zz][sz+1] + 1, matrix[zz][sz] + 1)
return matrix[l2][l1]
import itertools
def group_similar(words):
seeder = Seeder()
words = sorted(words, key=seeder.get_seed)
groups = itertools.groupby(words, key=seeder.get_seed)
return [list(v) for k,v in groups]
例:
import pprint
print pprint.pprint(group_similar([
'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have',
'I', 'it', 'for', 'not', 'on', 'with', 'he', 'as', 'you',
'do', 'at', 'this', 'but', 'his', 'by', 'from', 'they', 'we',
'say', 'her', 'she', 'or', 'an', 'will', 'my', 'one', 'all',
'would', 'there', 'their', 'what', 'so', 'up', 'out', 'if',
'about', 'who', 'get', 'which', 'go', 'me', 'when', 'make',
'can', 'like', 'time', 'no', 'just', 'him', 'know', 'take',
'people', 'into', 'year', 'your', 'good', 'some', 'could',
'them', 'see', 'other', 'than', 'then', 'now', 'look',
'only', 'come', 'its', 'over', 'think', 'also', 'back',
'after', 'use', 'two', 'how', 'our', 'work', 'first', 'well',
'way', 'even', 'new', 'want', 'because', 'any', 'these',
'give', 'day', 'most', 'us'
]), width=120)
输出:
[['after'],
['also'],
['and', 'a', 'in', 'on', 'as', 'at', 'an', 'one', 'all', 'can', 'no', 'want', 'any'],
['back'],
['because'],
['but', 'about', 'get', 'just'],
['first'],
['from'],
['good', 'look'],
['have', 'make', 'give'],
['his', 'her', 'if', 'him', 'its', 'how', 'us'],
['into'],
['know', 'new'],
['like', 'time', 'take'],
['most'],
['of', 'I', 'it', 'for', 'not', 'he', 'you', 'do', 'by', 'we', 'or', 'my', 'so', 'up', 'out', 'go', 'me', 'now'],
['only'],
['over', 'our', 'even'],
['people'],
['say', 'she', 'way', 'day'],
['some', 'see', 'come'],
['the', 'be', 'to', 'that', 'this', 'they', 'there', 'their', 'them', 'other', 'then', 'use', 'two', 'these'],
['think'],
['well'],
['what', 'who', 'when', 'than'],
['with', 'will', 'which'],
['work'],
['would', 'could'],
['year', 'your']]
Answer 2:
你必须在封闭的比赛的话,你想用哪个词来决定。 可能得到这get_close_matches正在恢复,或只使用该名单上随机函数和闭场比赛获得一个元素列表中的第一个元素。
必须有某种规则,因为它..
In [19]: import difflib
In [20]: a = ['ape', 'appel', 'apple', 'peach', 'puppy']
In [21]: a = ['appel', 'apple', 'peach', 'puppy']
In [22]: b = difflib.get_close_matches('ape',a)
In [23]: b
Out[23]: ['apple', 'appel']
In [24]: import random
In [25]: c = random.choice(b)
In [26]: c
Out[26]: 'apple'
In [27]:
现在,从最初的名单中删除C,这就是它......对于C ++,你可以使用Levenshtein_distance
Answer 3:
下面是使用近邻传播算法另一个版本。
import numpy as np
import scipy.linalg as lin
import Levenshtein as leven
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import AffinityPropagation
import itertools
words = np.array(
['the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have',
'I', 'it', 'for', 'not', 'on', 'with', 'he', 'as', 'you',
'do', 'at', 'this', 'but', 'his', 'by', 'from', 'they', 'we',
'say', 'her', 'she', 'or', 'an', 'will', 'my', 'one', 'all',
'would', 'there', 'their', 'what', 'so', 'up', 'out', 'if',
'about', 'who', 'get', 'which', 'go', 'me', 'when', 'make',
'can', 'like', 'time', 'no', 'just', 'him', 'know', 'take',
'people', 'into', 'year', 'your', 'good', 'some', 'could',
'them', 'see', 'other', 'than', 'then', 'now', 'look',
'only', 'come', 'its', 'over', 'think', 'also', 'back',
'after', 'use', 'two', 'how', 'our', 'work', 'first', 'well',
'way', 'even', 'new', 'want', 'because', 'any', 'these',
'give', 'day', 'most', 'us'])
print "calculating distances..."
(dim,) = words.shape
f = lambda (x,y): -leven.distance(x,y)
res=np.fromiter(itertools.imap(f, itertools.product(words, words)), dtype=np.uint8)
A = np.reshape(res,(dim,dim))
af = AffinityPropagation().fit(A)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
unique_labels = set(labels)
for i in unique_labels:
print words[labels==i]
的距离必须被转换成相似性,我确实,通过采取距离的负值。 输出是
['to' 'you' 'do' 'by' 'so' 'who' 'go' 'into' 'also' 'two']
['it' 'with' 'at' 'if' 'get' 'its' 'first']
['of' 'for' 'from' 'or' 'your' 'look' 'after' 'work']
['the' 'be' 'have' 'I' 'he' 'we' 'her' 'she' 'me' 'give']
['this' 'his' 'which' 'him']
['and' 'a' 'in' 'an' 'my' 'all' 'can' 'any']
['on' 'one' 'good' 'some' 'see' 'only' 'come' 'over']
['would' 'could']
['but' 'out' 'about' 'our' 'most']
['make' 'like' 'time' 'take' 'back']
['that' 'they' 'there' 'their' 'when' 'them' 'other' 'than' 'then' 'think'
'even' 'these']
['not' 'no' 'know' 'now' 'how' 'new']
['will' 'people' 'year' 'well']
['say' 'what' 'way' 'want' 'day']
['because']
['as' 'up' 'just' 'use' 'us']
Answer 4:
另一种方法,可以利用矩阵因式分解,使用SVD。 首先,我们创建字距离矩阵,为100个单词,这将是100×100矩阵representating所有换句话说,从每个字的距离。 然后,SVD是运行在这个矩阵中,在所得到的U,S,V的U可以看作会员强度给每个群集。
码
import numpy as np
import scipy.linalg as lin
import Levenshtein as leven
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import itertools
words = np.array(
['the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have',
'I', 'it', 'for', 'not', 'on', 'with', 'he', 'as', 'you',
'do', 'at', 'this', 'but', 'his', 'by', 'from', 'they', 'we',
'say', 'her', 'she', 'or', 'an', 'will', 'my', 'one', 'all',
'would', 'there', 'their', 'what', 'so', 'up', 'out', 'if',
'about', 'who', 'get', 'which', 'go', 'me', 'when', 'make',
'can', 'like', 'time', 'no', 'just', 'him', 'know', 'take',
'people', 'into', 'year', 'your', 'good', 'some', 'could',
'them', 'see', 'other', 'than', 'then', 'now', 'look',
'only', 'come', 'its', 'over', 'think', 'also', 'back',
'after', 'use', 'two', 'how', 'our', 'work', 'first', 'well',
'way', 'even', 'new', 'want', 'because', 'any', 'these',
'give', 'day', 'most', 'us'])
print "calculating distances..."
(dim,) = words.shape
f = lambda (x,y): leven.distance(x,y)
res=np.fromiter(itertools.imap(f, itertools.product(words, words)),
dtype=np.uint8)
A = np.reshape(res,(dim,dim))
print "svd..."
u,s,v = lin.svd(A, full_matrices=False)
print u.shape
print s.shape
print s
print v.shape
data = u[:,0:10]
k=KMeans(init='k-means++', k=25, n_init=10)
k.fit(data)
centroids = k.cluster_centers_
labels = k.labels_
print labels
for i in range(np.max(labels)):
print words[labels==i]
def dist(x,y):
return np.sqrt(np.sum((x-y)**2, axis=1))
print "centroid points.."
for i,c in enumerate(centroids):
idx = np.argmin(dist(c,data[labels==i]))
print words[labels==i][idx]
print words[labels==i]
plt.plot(centroids[:,0],centroids[:,1],'x')
plt.hold(True)
plt.plot(u[:,0], u[:,1], '.')
plt.show()
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
ax.plot(u[:,0], u[:,1], u[:,2],'.', zs=0,
zdir='z', label='zs=0, zdir=z')
plt.show()
结果
any
['and' 'an' 'can' 'any']
do
['to' 'you' 'do' 'so' 'go' 'no' 'two' 'how']
when
['who' 'when' 'well']
my
['be' 'I' 'by' 'we' 'my' 'up' 'me' 'use']
your
['for' 'or' 'out' 'about' 'your' 'our']
its
['it' 'his' 'if' 'him' 'its']
could
['would' 'people' 'could']
this
['this' 'think' 'these']
she
['the' 'he' 'she' 'see']
back
['all' 'back' 'want']
one
['of' 'on' 'one' 'only' 'even' 'new']
just
['but' 'just' 'first' 'most']
come
['some' 'come']
that
['that' 'than']
way
['say' 'what' 'way' 'day']
like
['like' 'time' 'give']
in
['in' 'into']
get
['her' 'get' 'year']
because
['because']
will
['with' 'will' 'which']
over
['other' 'over' 'after']
as
['a' 'as' 'at' 'also' 'us']
them
['they' 'there' 'their' 'them' 'then']
good
['not' 'from' 'know' 'good' 'now' 'look' 'work']
have
['have' 'make' 'take']
k代表簇的数目的选择是重要的,K = 25给出大于k = 20例如更好的结果。
该代码还通过拾取其U [..]坐标最接近群集的质心的字选择用于每个集群的代表单词。
Answer 5:
这是基于中心点划分的方法。 首先安装MlPy。 在Ubuntu
sudo apt-get install python-mlpy
然后
import numpy as np
import mlpy
class distance:
def compute(self, s1, s2):
l1 = len(s1)
l2 = len(s2)
matrix = [range(zz,zz + l1 + 1) for zz in xrange(l2 + 1)]
for zz in xrange(0,l2):
for sz in xrange(0,l1):
if s1[sz] == s2[zz]:
matrix[zz+1][sz+1] = min(matrix[zz+1][sz] + 1, matrix[zz][sz+1] + 1, matrix[zz][sz])
else:
matrix[zz+1][sz+1] = min(matrix[zz+1][sz] + 1, matrix[zz][sz+1] + 1, matrix[zz][sz] + 1)
return matrix[l2][l1]
x = np.array(['ape', 'appel', 'apple', 'peach', 'puppy'])
km = mlpy.Kmedoids(k=3, dist=distance())
medoids,clusters,a,b = km.compute(x)
print medoids
print clusters
print a
print x[medoids]
for i,c in enumerate(x[medoids]):
print "medoid", c
print x[clusters[a==i]]
输出是
[4 3 1]
[0 2]
[2 2]
['puppy' 'peach' 'appel']
medoid puppy
[]
medoid peach
[]
medoid appel
['ape' 'apple']
更大的单词表,并使用K = 10
medoid he
['or' 'his' 'my' 'have' 'if' 'year' 'of' 'who' 'us' 'use' 'people' 'see'
'make' 'be' 'up' 'we' 'the' 'one' 'her' 'by' 'it' 'him' 'she' 'me' 'over'
'after' 'get' 'what' 'I']
medoid out
['just' 'only' 'your' 'you' 'could' 'our' 'most' 'first' 'would' 'but'
'about']
medoid to
['from' 'go' 'its' 'do' 'into' 'so' 'for' 'also' 'no' 'two']
medoid now
['new' 'how' 'know' 'not']
medoid time
['like' 'take' 'come' 'some' 'give']
medoid because
[]
medoid an
['want' 'on' 'in' 'back' 'say' 'and' 'a' 'all' 'can' 'as' 'way' 'at' 'day'
'any']
medoid look
['work' 'good']
medoid will
['with' 'well' 'which']
medoid then
['think' 'that' 'these' 'even' 'their' 'when' 'other' 'this' 'they' 'there'
'than' 'them']
文章来源: Fuzzy Group By, Grouping Similar Words