My team and I are dealing with many thousands of URLs that have similar segments. Some URLs have one segment ("seg", plural, "segs") in a position of interest to us. Other similar URLs have a different seg in the position of interest to us. We need to sort a dataframe consisting of URLs and associated unique segs in the position of interest, showing the frequency of those unique segs.
Here is a simplified example:
url <- c(1, 3, 1, 4, 2, 3, 1, 3, 3, 3, 3, 2)
seg <- c("a", "c", "a", "d", "b", "c", "a", "x", "x", "y", "c", "b")
df <- data.frame(url,seg)
We are looking for the following:
url freq seg
1 3 a in other words, url #1 appears three times each with a seg = "a",
2 2 b in other words: url #2 appears twice each with a seg = "b",
3 3 c in other words: url #3 appears three times with a seg = "c",
3 2 x two times with a seg = "x", and,
3 1 y once with a seg = "y"
4 1 d etc.
I can get there using a loop and several small steps, but am convinced there is a more elegant way of doing this. Here's my inelegant approach:
Create empty dataframe with num.unique rows and three columns (url, freq, seg)
result <- data.frame(url=0, Freq=0, seg=0)
Determine the unique URLs
unique.df.url <- unique(df$url)
Loop through the dataframe
for (xx in unique.df.url) {
url.seg <- df[which(df$url == unique.df.url[xx]), ] # create a dataframe for each of the unique urls and associated segs
freq.df.url <- data.frame(table(url.seg)) # summarize the frequency distribution of the segs by url
result <- rbind(result,freq.df.url) # append a new data.frame onto the last one
}
Eliminate rows in the dataframe where Frequency = 0
result.freq <- result[which(result$Freq |0), ]
Sort the dataframe by URL
result.order <- result.freq[order(result.freq$url), ]
This yields the desired results, but since it is so inelegant, I am concerned that once we move to scale, the time required will be prohibitive or at least a concern. Any suggestions?