This is the CFG:
S -> T | V
T -> UU
U -> aUb | ab
V -> aVb | aWb
W -> bWa | ba
so this will accept some form of:
{a^n b^n a^m b^m | n,m >= 1} U {a^n b^m a^m b^n | n,m >= 1}
And here is the code I'm working with:
in_lang([]).
in_lang(L) :-
mapS(L), !.
mapS(L) :-
mapT(L) ; mapV(L),!.
mapT(L) :-
append(L1, mapU(L), L), mapU(L1), !.
mapU([a|T]) :-
((append(L1,[b],T), mapU(L1)) ; (T = b)),!.
mapV([a|T]) :-
((append(L1,[b],T), mapV(L1)) ;
(append(L1,[b],T), mapW(L1))),
!.
mapW([b|T]) :-
((append(L1,[a],T), mapW(L1)) ;
(T = a)),
!.
As of right now, this is returning false for the following three strings:
[a,a,b,b,a,b] // this should be true
[a,a,a,b,b,a,a,b,b,b] // this should be true as well
[a,a,a,b,b,a,b,b,b] // this one IS false
Any help or insight would be greatly appreciated, I'm not too comfortable with Prolog so debugging this by myself has been a challenge.
First, note that this code doesn't make sense:
... append(L1, mapU(L), L) ...
In Prolog there are predicates, not functions...
A CFG production rule (a non terminal) should 'eat' a number of tokens, and in Prolog this means you need at least 2 arguments: the input token list, and what remains after a production has successfully matched the relevant part of input.
That is, append/3 is not required: just pattern matching, performed by unification operator (=)/2
mapS(L1, L) :- mapT(L1,L) ; mapV(L1,L).
mapT(L1, L) :- mapU(L1,L2), mapU(L2,L).
mapU(L1, L) :- L1=[a|L2], mapU(L2,L3), L3=[b|L] ; L1=[a,b|L].
... complete the translation
and then call it:
?- mapS([a,a,b,b,a,b],R).
R = [] ;
false.
R = []
means the entire sequence has been matched...
Simply use a dcg! And library(double_quotes)
.
:- set_prolog_flag(double_quotes, chars).
s --> t | v.
t --> u, u.
u --> "a",u,"b" | "ab".
v --> "a",v,"b" | "a",w,"b".
w --> "b",w,"a" | "ba".
| ?- use_module(library(double_quotes)).
| ?- length(L,N), phrase(s, L).
L = "abab", N = 4 ? ;
L = "abab", N = 4 ? ;
L = "aabbab", N = 6 ? ;
L = "abaabb", N = 6 ? ;
L = "aababb", N = 6 ? ;
L = "abbaab", N = 6 ? ;
L = "aaabbbab", N = 8 ? ;
L = "aabbaabb", N = 8 ? ;
L = "abaaabbb", N = 8 ? ;
L = "aaababbb", N = 8 ? ...
In the definition of mapT
, you are trying to use the "return value" of mapU
as an argument to append
. But mapU
is a predicate, and predicates don't have return values.
Instead one typically writes a predicate with an unbound variable which the predicate binds to the desired "return value"; after the predciate has been proven, the now bound variable can be used in subsequent predicates.