I try to use t-SNE algorithm in the scikit-learn:
import numpy as np
from sklearn.manifold import TSNE
X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
model = TSNE(n_components=2, random_state=0)
np.set_printoptions(suppress=True)
model.fit_transform(X)
Output:
array([[ 0.00017599, 0.00003993], #1
[ 0.00009891, 0.00021913],
[ 0.00018554, -0.00009357],
[ 0.00009528, -0.00001407]]) #2
After that I try to add some points with the coordinates exactly like in the first array X
to the existing model:
Y = np.array([[0, 0, 0], [1, 1, 1]])
model.fit_transform(Y)
Output:
array([[ 0.00017882, 0.00004002], #1
[ 0.00009546, 0.00022409]]) #2
But coords in the second array not equal to the first and last coords from the first array.
I understand that this is the right behaviour, but how can I add new coords to the model
and get the same coords in the output array for the same coords in the input array?
Also I still need to get closest points even after appending new points.