The following code fails to compile:
// template<class>
struct S {
int g() const {
return 0;
}
constexpr int f() const {
return g();
}
};
int main()
{
S /*<int>*/ s;
auto z = s.f();
}
GCC, for example, complains: error: call to non-constexpr function ‘int S::g() const’. This is perfectly reasonable. But if I turn S into a template, the code compiles (checked with MSVC 15.3, GCC 7.1.0, clang 4.0.1).
Why? Does constexpr has any special meaning in class templates?
As far as I understand it, this code is incorrect, but the standard does not require that compilers produce an error (why?).
Per [dcl.constexpr]
The definition of a constexpr function shall satisfy the following constraints:
...
every constructor call and implicit conversion used in initializing the return value (6.6.3, 8.5) shall be
one of those allowed in a constant expression
A call to g()
is not allowed in a constant expression. Per [expr.const]:
A conditional-expression is a core constant expression unless it involves one of the following as a potentially
evaluated subexpression...:
— an invocation of a function other than [...] a constexpr
function
It looks like some compilers may allow you to do what you're doing because z
isn't declared constexpr
so the value doesn't need to be known at compile-time. If you change your code to
constexpr auto z = s.f();
you'll note that all those compilers will proceed to barf, template or not.