I'm creating 3D Compass application.
I'm using getOrientation method to get orientation (almost same implementation like here). If I place phone on the table it works well, but when top of the phone points to the sky (minus Z axis on the picture; sphere is the Earth) getOrientation starts giving really bad results. It gives values for Z axis between 0 to 180 degrees in a few real degrees. Is there any way how to suppress this behavior? I created a little video what describes problem (sorry for bad quality). Thanks in advance.
Solution:
When you rotating model, there is difference between:
gl.glRotatef(_angleY, 0f, 1f, 0f); //ROLL
gl.glRotatef(_angleX, 1f, 0f, 0f); //ELEVATION
gl.glRotatef(_angleZ, 0f, 0f, 1f); //AZIMUTH
gl.glRotatef(_angleX, 1f, 0f, 0f); //ELEVATION
gl.glRotatef(_angleY, 0f, 1f, 0f); //ROLL
gl.glRotatef(_angleZ, 0f, 0f, 1f); //AZIMUTH
好吧,我可以看到你的这种做法至少1问题。
我认为你把对应的磁力与均值低通滤波器,以平滑的数据的三维矢量。 虽然这种方法是有效的伟大的传感器值而没有不连续,如加速度计原始数据变化时,它不会从你的磁强计取角变量的工作如此之大一字不差。 为什么,有人可能会问?
由于这些角变量(方位角,俯仰,滚动)具有上结合的和结合的低,这意味着高于180度的任意值,即181度,将环绕到181-360 = -179度,并且任何变量下面-180度将在另一个方向上环绕。 因此,当这些角的变量之一得到接近于阈值(180或-180),该变量将趋向于振荡以接近于2个极端值。 当你一味的低通滤波器,适用于那些价值观,你要么顺利从180度向-180度或从平稳走向-180 180度的增大而减小。 无论哪种方式,结果看起来就会很喜欢你上面的视频......只要一个直接应用的平均缓冲到原始角度数据从getOrientation(...)
这个问题会出现(而且应该不仅存在于其中手机是正直,而且在那里有方位角的wraparounds太...也许你可以测试这些错误,以及...)案件的情况。
你说你这个测试用的1缓冲区大小从理论上说,这个问题不应该存在,如果存在根本不进行平均,虽然我已经在过去见过循环缓冲区的一些实现,这可能意味着有仍然场均至少有1过去值进行,而不是有没有平均的。 如果您遇到这种情况,我们发现你的错误的根本原因。
不幸的是,没有太多的,可以同时用标准平均滤波器坚持实现一个优雅的解决方案。 我通常在这种情况下是切换到另一种类型的低通滤波器的,其不需要任何深缓冲器来操作:一个简单的IIR滤波器(顺序1):
DIFF = X [n]的- Y [N-1]
Y [N] - Y [N-1] =阿尔法 *(X [n]的- Y [N-1])=阿尔法 * DIFF
...其中y是过滤角度,x是原始角,和α<1类似于一个时间常数,如α= 1对应于无过滤器的情况下,和所述低通滤波器的截止频率变降低如α趋近于零。 急性眼大概会到现在,这相当于一个简单的比例控制器的注意。
这样的过滤器允许角度值的回绕的补偿,因为我们可以加上或减去360 diff的 ,以便确保ABS(差异)<= 180,这又确保了过滤角度值将始终增加/减少最佳的方向以达到其“设定值”。
一个示例函数调用,将被周期性地调度时,其计算经滤波的角度值y对于给定的原始角度值x,可能是这样的:
private float restrictAngle(float tmpAngle){
while(tmpAngle>=180) tmpAngle-=360;
while(tmpAngle<-180) tmpAngle+=360;
return tmpAngle;
}
//x is a raw angle value from getOrientation(...)
//y is the current filtered angle value
private float calculateFilteredAngle(float x, float y){
final float alpha = 0.1f;
float diff = x-y;
//here, we ensure that abs(diff)<=180
diff = restrictAngle(diff);
y += alpha*diff;
//ensure that y stays within [-180, 180[ bounds
y = restrictAngle(y);
return y;
}
功能calculateFilteredAngle(float x, float y)
然后可以使用这样的事情(例如用于从方位角周期性地调用getOrientation(...)
函数:
filteredAzimuth = calculateFilteredAngle(azimuth, filteredAzimuth);
使用这种方法,过滤器不会胡作非为像平均滤波器由OP提及。
正如我无法加载由OP上传.apk文件,我决定实现自己的测试项目,以查看是否更正工作。 这里是整个代码(它不使用.XML为主要布局,所以我不包括它)。 只需将它复制到一个测试项目,看看它是否工作的特定设备(在HTC Desire的W /安卓2.1版测试功能。)上:
文件1:Compass3DActivity.java:
package com.epichorns.compass3D;
import android.app.Activity;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.view.ViewGroup;
import android.widget.LinearLayout;
import android.widget.TextView;
public class Compass3DActivity extends Activity {
//Textviews for showing angle data
TextView mTextView_azimuth;
TextView mTextView_pitch;
TextView mTextView_roll;
TextView mTextView_filtered_azimuth;
TextView mTextView_filtered_pitch;
TextView mTextView_filtered_roll;
float mAngle0_azimuth=0;
float mAngle1_pitch=0;
float mAngle2_roll=0;
float mAngle0_filtered_azimuth=0;
float mAngle1_filtered_pitch=0;
float mAngle2_filtered_roll=0;
private Compass3DView mCompassView;
private SensorManager sensorManager;
//sensor calculation values
float[] mGravity = null;
float[] mGeomagnetic = null;
float Rmat[] = new float[9];
float Imat[] = new float[9];
float orientation[] = new float[3];
SensorEventListener mAccelerometerListener = new SensorEventListener(){
public void onAccuracyChanged(Sensor sensor, int accuracy) {}
public void onSensorChanged(SensorEvent event) {
if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER){
mGravity = event.values.clone();
processSensorData();
}
}
};
SensorEventListener mMagnetometerListener = new SensorEventListener(){
public void onAccuracyChanged(Sensor sensor, int accuracy) {}
public void onSensorChanged(SensorEvent event) {
if (event.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD){
mGeomagnetic = event.values.clone();
processSensorData();
update();
}
}
};
private float restrictAngle(float tmpAngle){
while(tmpAngle>=180) tmpAngle-=360;
while(tmpAngle<-180) tmpAngle+=360;
return tmpAngle;
}
//x is a raw angle value from getOrientation(...)
//y is the current filtered angle value
private float calculateFilteredAngle(float x, float y){
final float alpha = 0.3f;
float diff = x-y;
//here, we ensure that abs(diff)<=180
diff = restrictAngle(diff);
y += alpha*diff;
//ensure that y stays within [-180, 180[ bounds
y = restrictAngle(y);
return y;
}
public void processSensorData(){
if (mGravity != null && mGeomagnetic != null) {
boolean success = SensorManager.getRotationMatrix(Rmat, Imat, mGravity, mGeomagnetic);
if (success) {
SensorManager.getOrientation(Rmat, orientation);
mAngle0_azimuth = (float)Math.toDegrees((double)orientation[0]); // orientation contains: azimut, pitch and roll
mAngle1_pitch = (float)Math.toDegrees((double)orientation[1]); //pitch
mAngle2_roll = -(float)Math.toDegrees((double)orientation[2]); //roll
mAngle0_filtered_azimuth = calculateFilteredAngle(mAngle0_azimuth, mAngle0_filtered_azimuth);
mAngle1_filtered_pitch = calculateFilteredAngle(mAngle1_pitch, mAngle1_filtered_pitch);
mAngle2_filtered_roll = calculateFilteredAngle(mAngle2_roll, mAngle2_filtered_roll);
}
mGravity=null; //oblige full new refresh
mGeomagnetic=null; //oblige full new refresh
}
}
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
LinearLayout ll = new LinearLayout(this);
LinearLayout.LayoutParams llParams = new LinearLayout.LayoutParams(LinearLayout.LayoutParams.FILL_PARENT, LinearLayout.LayoutParams.FILL_PARENT);
ll.setLayoutParams(llParams);
ll.setOrientation(LinearLayout.VERTICAL);
ViewGroup.LayoutParams txtParams = new ViewGroup.LayoutParams(ViewGroup.LayoutParams.WRAP_CONTENT, ViewGroup.LayoutParams.WRAP_CONTENT);
mTextView_azimuth = new TextView(this);
mTextView_azimuth.setLayoutParams(txtParams);
mTextView_pitch = new TextView(this);
mTextView_pitch.setLayoutParams(txtParams);
mTextView_roll = new TextView(this);
mTextView_roll.setLayoutParams(txtParams);
mTextView_filtered_azimuth = new TextView(this);
mTextView_filtered_azimuth.setLayoutParams(txtParams);
mTextView_filtered_pitch = new TextView(this);
mTextView_filtered_pitch.setLayoutParams(txtParams);
mTextView_filtered_roll = new TextView(this);
mTextView_filtered_roll.setLayoutParams(txtParams);
mCompassView = new Compass3DView(this);
ViewGroup.LayoutParams compassParams = new ViewGroup.LayoutParams(200,200);
mCompassView.setLayoutParams(compassParams);
ll.addView(mCompassView);
ll.addView(mTextView_azimuth);
ll.addView(mTextView_pitch);
ll.addView(mTextView_roll);
ll.addView(mTextView_filtered_azimuth);
ll.addView(mTextView_filtered_pitch);
ll.addView(mTextView_filtered_roll);
setContentView(ll);
sensorManager = (SensorManager) this.getSystemService(Context.SENSOR_SERVICE);
sensorManager.registerListener(mAccelerometerListener, sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_UI);
sensorManager.registerListener(mMagnetometerListener, sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD), SensorManager.SENSOR_DELAY_UI);
update();
}
@Override
public void onDestroy(){
super.onDestroy();
sensorManager.unregisterListener(mAccelerometerListener);
sensorManager.unregisterListener(mMagnetometerListener);
}
private void update(){
mCompassView.changeAngles(mAngle1_filtered_pitch, mAngle2_filtered_roll, mAngle0_filtered_azimuth);
mTextView_azimuth.setText("Azimuth: "+String.valueOf(mAngle0_azimuth));
mTextView_pitch.setText("Pitch: "+String.valueOf(mAngle1_pitch));
mTextView_roll.setText("Roll: "+String.valueOf(mAngle2_roll));
mTextView_filtered_azimuth.setText("Azimuth: "+String.valueOf(mAngle0_filtered_azimuth));
mTextView_filtered_pitch.setText("Pitch: "+String.valueOf(mAngle1_filtered_pitch));
mTextView_filtered_roll.setText("Roll: "+String.valueOf(mAngle2_filtered_roll));
}
}
文件2:Compass3DView.java:
package com.epichorns.compass3D;
import android.content.Context;
import android.opengl.GLSurfaceView;
public class Compass3DView extends GLSurfaceView {
private Compass3DRenderer mRenderer;
public Compass3DView(Context context) {
super(context);
mRenderer = new Compass3DRenderer(context);
setRenderer(mRenderer);
}
public void changeAngles(float angle0, float angle1, float angle2){
mRenderer.setAngleX(angle0);
mRenderer.setAngleY(angle1);
mRenderer.setAngleZ(angle2);
}
}
文件3:Compass3DRenderer.java:
package com.epichorns.compass3D;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.nio.ShortBuffer;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.content.Context;
import android.opengl.GLSurfaceView;
public class Compass3DRenderer implements GLSurfaceView.Renderer {
Context mContext;
// a raw buffer to hold indices
ShortBuffer _indexBuffer;
// raw buffers to hold the vertices
FloatBuffer _vertexBuffer0;
FloatBuffer _vertexBuffer1;
FloatBuffer _vertexBuffer2;
FloatBuffer _vertexBuffer3;
FloatBuffer _vertexBuffer4;
FloatBuffer _vertexBuffer5;
int _numVertices = 3; //standard triangle vertices = 3
FloatBuffer _textureBuffer0123;
//private FloatBuffer _light0Position;
//private FloatBuffer _light0Ambient;
float _light0Position[] = new float[]{10.0f, 10.0f, 10.0f, 0.0f};
float _light0Ambient[] = new float[]{0.05f, 0.05f, 0.05f, 1.0f};
float _light0Diffuse[] = new float[]{0.5f, 0.5f, 0.5f, 1.0f};
float _light0Specular[] = new float[]{0.7f, 0.7f, 0.7f, 1.0f};
float _matAmbient[] = new float[] { 0.6f, 0.6f, 0.6f, 1.0f };
float _matDiffuse[] = new float[] { 0.6f, 0.6f, 0.6f, 1.0f };
private float _angleX=0f;
private float _angleY=0f;
private float _angleZ=0f;
Compass3DRenderer(Context context){
super();
mContext = context;
}
public void setAngleX(float angle) {
_angleX = angle;
}
public void setAngleY(float angle) {
_angleY = angle;
}
public void setAngleZ(float angle) {
_angleZ = angle;
}
FloatBuffer InitFloatBuffer(float[] src){
ByteBuffer bb = ByteBuffer.allocateDirect(4*src.length);
bb.order(ByteOrder.nativeOrder());
FloatBuffer inBuf = bb.asFloatBuffer();
inBuf.put(src);
return inBuf;
}
ShortBuffer InitShortBuffer(short[] src){
ByteBuffer bb = ByteBuffer.allocateDirect(2*src.length);
bb.order(ByteOrder.nativeOrder());
ShortBuffer inBuf = bb.asShortBuffer();
inBuf.put(src);
return inBuf;
}
//Init data for our rendered pyramid
private void initTriangles() {
//Side faces triangles
float[] coords = {
-0.25f, -0.5f, 0.25f,
0.25f, -0.5f, 0.25f,
0f, 0.5f, 0f
};
float[] coords1 = {
0.25f, -0.5f, 0.25f,
0.25f, -0.5f, -0.25f,
0f, 0.5f, 0f
};
float[] coords2 = {
0.25f, -0.5f, -0.25f,
-0.25f, -0.5f, -0.25f,
0f, 0.5f, 0f
};
float[] coords3 = {
-0.25f, -0.5f, -0.25f,
-0.25f, -0.5f, 0.25f,
0f, 0.5f, 0f
};
//Base triangles
float[] coords4 = {
-0.25f, -0.5f, 0.25f,
0.25f, -0.5f, -0.25f,
0.25f, -0.5f, 0.25f
};
float[] coords5 = {
-0.25f, -0.5f, 0.25f,
-0.25f, -0.5f, -0.25f,
0.25f, -0.5f, -0.25f
};
float[] textures0123 = {
// Mapping coordinates for the vertices (UV mapping CW)
0.0f, 0.0f, // bottom left
1.0f, 0.0f, // bottom right
0.5f, 1.0f, // top ctr
};
_vertexBuffer0 = InitFloatBuffer(coords);
_vertexBuffer0.position(0);
_vertexBuffer1 = InitFloatBuffer(coords1);
_vertexBuffer1.position(0);
_vertexBuffer2 = InitFloatBuffer(coords2);
_vertexBuffer2.position(0);
_vertexBuffer3 = InitFloatBuffer(coords3);
_vertexBuffer3.position(0);
_vertexBuffer4 = InitFloatBuffer(coords4);
_vertexBuffer4.position(0);
_vertexBuffer5 = InitFloatBuffer(coords5);
_vertexBuffer5.position(0);
_textureBuffer0123 = InitFloatBuffer(textures0123);
_textureBuffer0123.position(0);
short[] indices = {0, 1, 2};
_indexBuffer = InitShortBuffer(indices);
_indexBuffer.position(0);
}
public void onSurfaceCreated(GL10 gl, EGLConfig config) {
gl.glEnable(GL10.GL_CULL_FACE); // enable the differentiation of which side may be visible
gl.glShadeModel(GL10.GL_SMOOTH);
gl.glFrontFace(GL10.GL_CCW); // which is the front? the one which is drawn counter clockwise
gl.glCullFace(GL10.GL_BACK); // which one should NOT be drawn
initTriangles();
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
}
public void onDrawFrame(GL10 gl) {
gl.glPushMatrix();
gl.glClearColor(0, 0, 0, 1.0f); //clipping backdrop color
// clear the color buffer to show the ClearColor we called above...
gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
// set rotation
gl.glRotatef(_angleY, 0f, 1f, 0f); //ROLL
gl.glRotatef(_angleX, 1f, 0f, 0f); //ELEVATION
gl.glRotatef(_angleZ, 0f, 0f, 1f); //AZIMUTH
//Draw our pyramid
//4 side faces
gl.glColor4f(0.5f, 0f, 0f, 0.5f);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, _vertexBuffer0);
gl.glDrawElements(GL10.GL_TRIANGLES, _numVertices, GL10.GL_UNSIGNED_SHORT, _indexBuffer);
gl.glColor4f(0.5f, 0.5f, 0f, 0.5f);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, _vertexBuffer1);
gl.glDrawElements(GL10.GL_TRIANGLES, _numVertices, GL10.GL_UNSIGNED_SHORT, _indexBuffer);
gl.glColor4f(0f, 0.5f, 0f, 0.5f);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, _vertexBuffer2);
gl.glDrawElements(GL10.GL_TRIANGLES, _numVertices, GL10.GL_UNSIGNED_SHORT, _indexBuffer);
gl.glColor4f(0f, 0.5f, 0.5f, 0.5f);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, _vertexBuffer3);
gl.glDrawElements(GL10.GL_TRIANGLES, _numVertices, GL10.GL_UNSIGNED_SHORT, _indexBuffer);
//Base face
gl.glColor4f(0f, 0f, 0.5f, 0.5f);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, _vertexBuffer4);
gl.glDrawElements(GL10.GL_TRIANGLES, _numVertices, GL10.GL_UNSIGNED_SHORT, _indexBuffer);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, _vertexBuffer5);
gl.glDrawElements(GL10.GL_TRIANGLES, _numVertices, GL10.GL_UNSIGNED_SHORT, _indexBuffer);
gl.glPopMatrix();
}
public void onSurfaceChanged(GL10 gl, int w, int h) {
gl.glViewport(0, 0, w, h);
gl.glViewport(0, 0, w, h);
}
}
请注意,此代码不能弥补平板电脑的默认横向,所以它预计只在手机上正常工作(我没有平板附近测试任何纠正码)。