我想知道是否有人试图做的等效
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(secret, saltValueBytes);
byte[] secretKey = key.GetBytes(16);
在Java中。 其中秘密是一个字符串(密码),和saltValueBytes是,那么,在字节数组的盐。
我试过的东西,但似乎无法环绕它我的头。
我想知道是否有人试图做的等效
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(secret, saltValueBytes);
byte[] secretKey = key.GetBytes(16);
在Java中。 其中秘密是一个字符串(密码),和saltValueBytes是,那么,在字节数组的盐。
我试过的东西,但似乎无法环绕它我的头。
我发现这个实现通过谷歌搜索的方式,但我从来没有使用过。
RFC 2898 / PKCS#5 PBKDF2的一个免费的Java实现
似乎有不小的和免费的Java实现的RFC 2898 / PKCS#5可用。 小到只有几个源文件,琐碎的编译和依赖关系,免费为LGPL。
鉴于HMACSHA1的标准SUN JCE加密提供了可用性,这种实现是相当简单的,可以从RFC描述毫不夸张地导出。 我的代码是一个洁净室执行只用RFC为基础。
我知道这是太迟了,但Java 6和高达确实有一个内置的PBKDF2执行。
int dkLen = 64;
int rounds = 1000;
PBEKeySpec keySpec = new PBEKeySpec("Some password".toCharArray(), "SomeSalt".getBytes(), rounds, dkLen * 8);
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
byte[] out = factory.generateSecret(keySpec).getEncoded();
名单Java 6的安全性增强功能声称与PKCS#5可比性,并通过我自己的(粗略)测试它似乎产生正确的PBKDF2密钥。
这一次对我的作品。 我仍然感到难以置信,一个标准实现一个符合RFC2898-PBKDF2是不存在于JRE。 我想我必须找错了地方。 名称混乱(RFC2898 PKCS5 PBKDF2)没有帮助。
// PBKDF2.java
// ------------------------------------------------------------------
//
// RFC2898 PBKDF2 in Java. The RFC2898 defines a standard algorithm for
// deriving key bytes from a text password. This is also called
// "PBKDF2", for Password-based key derivation function #2.
//
// There's no RFC2898-compliant PBKDF2 function in the JRE, as far as I
// know, but it is available in many J2EE runtimes, including those from
// JBoss, IBM, and Oracle.
//
// It's fairly simple to implement, so here it is.
//
// Author: Admin
// built on host: DINOCH-2
// Created Sun Aug 09 01:06:57 2009
//
// last saved:
// Time-stamp: <2009-August-09 11:11:47>
// ------------------------------------------------------------------
//
// code from Matthias Gartner
//
// ------------------------------------------------------------------
package cheeso.examples;
import java.security.NoSuchAlgorithmException;
import java.security.InvalidKeyException;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
public class PBKDF2
{
public static byte[] deriveKey( byte[] password,
byte[] salt,
int iterationCount,
int dkLen )
throws java.security.NoSuchAlgorithmException,
java.security.InvalidKeyException
{
SecretKeySpec keyspec = new SecretKeySpec( password, "HmacSHA1" );
Mac prf = Mac.getInstance( "HmacSHA1" );
prf.init( keyspec );
// Note: hLen, dkLen, l, r, T, F, etc. are horrible names for
// variables and functions in this day and age, but they
// reflect the terse symbols used in RFC 2898 to describe
// the PBKDF2 algorithm, which improves validation of the
// code vs. the RFC.
//
// hLen denotes the length in octets of the pseudorandom function output
// dklen the length in octets (bytes) of the derived key.
int hLen = prf.getMacLength(); // 20 for SHA1
int l = Math.ceil( dkLen/hLen ); // 1 for 128bit (16-byte) keys
int r = dkLen - (l-1)*hLen; // 16 for 128bit (16-byte) keys
byte T[] = new byte[l * hLen];
int ti_offset = 0;
for (int i = 1; i <= l; i++) {
F( T, ti_offset, prf, salt, iterationCount, i );
ti_offset += hLen;
}
if (r < hLen) {
// Incomplete last block
byte DK[] = new byte[dkLen];
System.arraycopy(T, 0, DK, 0, dkLen);
return DK;
}
return T;
}
private static void F( byte[] dest, int offset, Mac prf, byte[] S, int c, int blockIndex ) {
final int hLen = prf.getMacLength();
byte U_r[] = new byte[ hLen ];
// U0 = S || INT (i);
byte U_i[] = new byte[S.length + 4];
System.arraycopy( S, 0, U_i, 0, S.length );
INT( U_i, S.length, blockIndex );
for( int i = 0; i < c; i++ ) {
U_i = prf.doFinal( U_i );
xor( U_r, U_i );
}
System.arraycopy( U_r, 0, dest, offset, hLen );
}
private static void xor( byte[] dest, byte[] src ) {
for( int i = 0; i < dest.length; i++ ) {
dest[i] ^= src[i];
}
}
private static void INT( byte[] dest, int offset, int i ) {
dest[offset + 0] = (byte) (i / (256 * 256 * 256));
dest[offset + 1] = (byte) (i / (256 * 256));
dest[offset + 2] = (byte) (i / (256));
dest[offset + 3] = (byte) (i);
}
// ctor
private PBKDF2 () {}
}
通过添加过载deriveKey稍有改善Cheeso的用于与HMacSHA256或HMacSHA512工作码()。 随着这一变化,该代码与从PKDF2-HMAC-SHA512测试向量运行
PHP隐窝LIB其导致6个故障选自100测试用例。
// PBKDF2.java
// ------------------------------------------------------------------
//
// RFC2898 PBKDF2 in Java. The RFC2898 defines a standard algorithm for
// deriving key bytes from a text password. This is also called
// "PBKDF2", for Password-based key derivation function #2.
//
// There's no RFC2898-compliant PBKDF2 function in the JRE, as far as I
// know, but it is available in many J2EE runtimes, including those from
// JBoss, IBM, and Oracle.
//
// It's fairly simple to implement, so here it is.
//
// Author: Admin
// built on host: DINOCH-2
// Created Sun Aug 09 01:06:57 2009
//
// last saved:
// Time-stamp: <2009-August-09 11:11:47>
// ------------------------------------------------------------------
//
// code from Matthias Gartner
//
// ------------------------------------------------------------------
package cheeso.examples;
import java.security.NoSuchAlgorithmException;
import java.security.InvalidKeyException;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
public class PBKDF2
{
public static byte[] deriveKey(byte[] password,
byte[] salt,
int iterationCount,
int dkLen)
throws NoSuchAlgorithmException,
InvalidKeyException
{
return deriveKey("HmacSHA1", password, salt, iterationCount, dkLen);
}
public static byte[] deriveKey(String hmacAlgo,
byte[] password,
byte[] salt,
int iterationCount,
int dkLen)
throws NoSuchAlgorithmException,
InvalidKeyException
{
SecretKeySpec keyspec = new SecretKeySpec(password, hmacAlgo);
Mac prf = Mac.getInstance(hmacAlgo);
prf.init( keyspec );
// Note: hLen, dkLen, l, r, T, F, etc. are horrible names for
// variables and functions in this day and age, but they
// reflect the terse symbols used in RFC 2898 to describe
// the PBKDF2 algorithm, which improves validation of the
// code vs. the RFC.
//
// dklen is expressed in bytes. (16 for a 128-bit key, 32 for 256)
int hLen = prf.getMacLength(); // 20 for SHA1
int l = Math.max( dkLen, hLen); // 1 for 128bit (16-byte) keys
int r = dkLen - (l-1)*hLen; // 16 for 128bit (16-byte) keys
byte T[] = new byte[l * hLen];
int ti_offset = 0;
for (int i = 1; i <= l; i++) {
F( T, ti_offset, prf, salt, iterationCount, i );
ti_offset += hLen;
}
if (r < hLen) {
// Incomplete last block
byte DK[] = new byte[dkLen];
System.arraycopy(T, 0, DK, 0, dkLen);
return DK;
}
return T;
}
private static void F( byte[] dest, int offset, Mac prf, byte[] S, int c, int blockIndex ) {
final int hLen = prf.getMacLength();
byte U_r[] = new byte[ hLen ];
// U0 = S || INT (i);
byte U_i[] = new byte[S.length + 4];
System.arraycopy( S, 0, U_i, 0, S.length );
INT( U_i, S.length, blockIndex );
for( int i = 0; i < c; i++ ) {
U_i = prf.doFinal( U_i );
xor( U_r, U_i );
}
System.arraycopy( U_r, 0, dest, offset, hLen );
}
private static void xor( byte[] dest, byte[] src ) {
for( int i = 0; i < dest.length; i++ ) {
dest[i] ^= src[i];
}
}
private static void INT( byte[] dest, int offset, int i ) {
dest[offset + 0] = (byte) (i / (256 * 256 * 256));
dest[offset + 1] = (byte) (i / (256 * 256));
dest[offset + 2] = (byte) (i / (256));
dest[offset + 3] = (byte) (i);
}
// ctor
private PBKDF2 () {}
}